pmod wrc

1PC.xil

28. Sep - 16. Oct 2015

Davos, Switzerland

NOTE

The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.

This document (or report) is not an official publication of WMO and has not been subjected to its standard editorial procedures. The views expressed herein do not necessarily have the endorsement of the Organization.

FOREWORD

The World Meteorological Organization (WMO) through its Members recognizes in this era of Big Data that its Members and the organization must not forget that a weather datum is the result of the processes of a measurement, and that traceable measurements are fit-for-purpose in both weather and climate work and provide environmental intelligence for government and business sector decision makers.

The Commission for Instrument and Method of Observation (CIMO) as one of the eight Technical Commission in WMO focuses its work on accurate weather measurements by promoting and facilitating international standardization and compatibility of meteorological measurement systems used by Members within the WMO Integrated Global Observing System to improve quality of products and services of Members. The CIMO mission is achieved by supporting initiatives which by coordinating collective actions by Members with respect to observing systems produce results that exceed what each Member could produce unilaterally to meet their critical needs. CIMO supports development of new measuring methods and equipment critical to Member's needs, collaborates with meteorological instrument manufacturers, the scientific community and other developers to facilitate a production of reliable instruments that are adequately tested before use, and supports capacity and capability building in developing and least developed countries to close the gap between them and the developed countries.

The organization and hosting of the WMO International Pyrheliometer Comparisons (IPCs) at the Physi-kalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC) has a long and important history. It aims at ensuring the traceability of solar radiation measurements around the world using the World Radiometric Reference (WRR) and defining suitable working references to WMO Members and instrument manufacturers. This work involves CIMO experts and is one of the core activities in which the Commission is directly involved.

The regularity of IPCs is a key to traceability of solar radiation measurements around the world using the WRR, and this report summarizes the outcomes of the $12^{\text {th }}$ IPC. The report demonstrates the stability of the WRR in providing a world-wide metrological reference. However, comparisons held over the last decade, and particularly since IPC-XI, have indicated that there may be a 0.3% bias between the International System of Units (SI) and WRR. As a result CIMO has established a Task Team on Radiation References to advise on whether the WRR needs to be replaced with a revised reference with zero bias to SI. The Task Team will report to CIMO in 2018, and based on that report, a recommendation may be made to the following WMO Congress. But more work is required to ensure a small but significant change is really required, as it will not only impact on future measurements but the historical record. The last significant change in the historical record was done with the introduction of the WRR on 1 January 1980 as the measurement reference for solar exposure and irradiance data records. For the $12^{\text {th }}$ IPC in autumn 2015, there were fewer clear sky days than in 2010 but still more than sufficient to provide a statistically significant sample of solar irradiance data.

A key serendipitous outcome of IPC-XII was through MeteoSwiss making a video with help of PMOD and the IPC participants. The video focuses on the reasons why an IPC is so important, both as a means of providing traceability, as well as information sharing amongst solar and longwave radiation measurement experts and capability building for newcomers to this form of metrology. I recommend that you view the video on the following link: https://vimeo.com/164968933. Furthermore I have heard from IPC-XII participants that they believe it was a very successful IPC, and also provided the excellent opportunity to host the $4^{\text {th }}$ Filter Radiometer Comparison, and the $3^{\text {rd }}$ Infrared Pyrgeometer Comparison. Reports of those comparisons are to be released shortly.

IPC-XII also demonstrated the continuing importance of the World Radiation Centre at PMOD in ensuring the artefacts currently required to define the WRR in the form of cavity radiometers. While it is unfortunate that two of the radiometers that are used to define the WRR will need to be restored, the progress demonstrated in developing new instruments, including the cryogenic radiometer as a method of direct traceability to SI is encouraging. However, with the help of Dr John Hickey, a veteran of solar radiation metrology and IPCs, the initial repair of the WRR HF was accomplished, and provided participating experts with significant insight into the workings of absolute radiometers.

I wish to express my sincere appreciation to all the major players during the preparation of the IPCXII, during the intercomparisons, and when analyzing and reporting the final results. Particularly to all PMOD/WRC staff as well as the members of the Ad-hoc committee.

Prof. B. Calpini
President Commission for Instruments and Methods of Observation

WMO International Pyrheliometer
 Comparison
 IPC-XII
 28 September - 16 October 2015
 Davos, Switzerland

Final Report

Wolfgang Finsterle

Contents

1 Organization and Procedures 5
1.1 Introduction 5
1.2 Participation 5
1.3 Relevance to Other International Organizations 5
1.4 Data Acquisition and Evaluation 12
1.4.1 Timing of the Measurements 12
1.4.2 Data Evaluation 13
1.4.3 Auxiliary Data 14
1.5 Approvement and Dissemination of the Results 15
2 Irradiance Measurements and Results 17
2.1 Data Selection Criteria for the Final Evaluation 17
2.2 Computation of the New WRR Factors 17
2.2.1 WSG Instruments 17
2.2.2 Participating Instruments 18
2.3 Status of the WSG and Transfer of the WRR 18
2.4 External stability check of the WSG 23
3 Conclusions and Recommendations 27
3.1 Graphical Representation of the Results 27
4 Auxiliary Data 83
4.1 Direct and Diffuse Irradiance 83
4.2 Airmass and Aerosol Optical Depth (AOD) 84
4.3 Scattering Parameters 85
4.4 Wind Speed 86
4.5 Meteorological Data 88
5 Symposium 89
5.1 To Build and Share Knowledge 89
6 Supplementary Information 91
6.1 Addresses of Participants 91
Appendices 101
A Corrigendum 101
A. 1 Tables 101
A. 2 Addresses of Participants 101

Chapter 1 Organization and Procedures

1.1 Introduction

The $12^{\text {th }}$ International Pyrheliometer Comparison (IPC-XII) was held together with Regional Pyrheliometer Comparisons (RPCs) of all WMO Regional Associations (RA I to RA VI) from 28 September through 16 October 2015 at the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC) in Davos, Switzerland. Concurrent with the IPC-XII were held the fourth Filter Radiometer Comparisons (FRC-IV) and the second International Pyrgeometer Comparisons (IPgC-II). Results from the FRC-IV and IPgC-II will be presented in separate reports.

The results presented in this report are based on the measurements carried out during the three weeks assigned to the IPC-XII. The favorable weather conditions allowed to acquire a large number of calibration points for most participating instruments. Seminar presentations were given on days when the weather conditions did not allow taking measurements.

1.2 Participation

Representatives from 15 Regional and 15 National Radiation Centers as well as 25 manufacturers and other institutions took part in the comparison. They were represented by 111 participants from 33 countries who operated 134 pyrheliometers. The six World Standard Group (WSG) and 18 additional pyrheliometers, including the Cryogenic Solar Absolute Radiometer (CSAR), were operated by the WRC staff. See Tables 1.1 and 1.2 for a complete list of all participating centres and institutions. A representative of WMO was attending during the first couple of days of IPC-XII.

1.3 Relevance to Other International Organizations

The IPC-XII were also held as Euramet supplementary comparisons (EURAMET.PR-S6) and were open to calibration laboratories which have current CMCs for solar irradiance listed in the BIPM key comparison database (BIPM-KCDB). PMOD/WRC served as coordinating institute for this supplementary comparison with METAS (Switzerland) and NPL (United Kingdom) as participating partners. Further partners were VNIIOFI (Russian Federation) and NIM (China).

Table 1.1: IPC-XII Participation: World, Regional and National Radiation Centers

Country	Type	Institution	Operator(s)	Instrument(s)
World Radiation Center				
Switzerland	WRC	Physikalisch-Meteorologisches	Wolfgang Finsterle	PMO2
		Observatorium Davos, World	Nathan Mingard	PMO5
		Radiation Centre, Davos	Benjamin Walter	CROM2L
			Christian Thomann	PAC3
			Ricco Soder	HF18748
			Markus Suter	MK67814
			Julian Gröbner	NIP-31144E6
			Stelios Kazadzis	DARA A, B, C
			Natalia Kouremeti	EPAC11402
			André Gauderon	CH1-970147
			Patrik Caspar	PMO6-79-122
			Werner Schmutz	PMO6-80022
				AHF32455
				CSAR
				PMO6-0401
				PMO6-0801
				PMO6-0803
				PMO6-1105
				PMO6-1106
				PMO6-1107
				PMO6-1111
				PMO6-1112
				SIAR-2A
				SIAR-2B
				PMO6-7 (on behalf of
				Meteoswiss,
				Payerene)
RA I (Africa)				
Egypt	RRC	Egyptian Meteorolgical Auth., Cairo	Mohamed Korany	AHF-31103
Nigeria	RRC	Nigerian Meteorolical Agency,	Olatokunbo Ouklaja	A 576
		Abuja, FCT		CHP1-150291
South Africa	NRC	South African Weather Service, Pretoria, Gauteng	Lucky Ntsangwane	AHF 31109
			Katlego Ncogwane	PMO6-850404
			Brighton Mabasa	Linke-700198

Table 1.1: (continued)

Country	Type	Institution	Operator(s)	Instrument(s)
RA II (Asia)				
China	NRC	CMA, Beijing	Yang Yun Ding Lei Chong Wei Ren Zhihua Jin Qi	PMO6-850406 PMO6-0808 AHF 36011
India	RRC	Indian Meteorological Dept., Central Radiation Laboratory, Pune, Maharashtra	Anjit Anjan	AHF 18742
Japan	RRC	JMA, Tokyo	Nozomu Ohkawara Osamu Ijima	$\begin{aligned} & \text { PMO6-0403 } \\ & \text { AHF-37815 } \end{aligned}$
Republic of Korea	NRC	Korea Meteorological Administration, Seoul	Yong-June Park II-sung Zo	AHF-36014
Saudi Arabia	NRC	K.A.CARE, Riyadh	Hussain Shibli Naif Alsaheel	$\begin{aligned} & \text { AHF-30110 } \\ & \text { AHF-31107 } \end{aligned}$
Thailand	NRC	Thai Meteorological Department, Bangkok	Pisood Promsut	HF 27796
RA III (South America)				
Argentina	RRC	Servicio Meteorologico Nacional, Buenos Aires	Gerardo Carbajal Benítez	AHF-30112
Chile	RRC	Dirección Meteorológica Chile, Santiago	Luis Valdés	PMO6-850410
RA IV (North America, Central America and the Caribbean)				
Mexico	RRC	Instituto de Geofísica, UNAM México, DF	David Riveros Hector Estevez	HF 29223 PMO6-1102
USA	RRC	NOAA/ESRL/GMD, Boulder	Donald Nelson Jim Wendell Emiel Hall	HF 28553 AHF 14917 AWX-32448 AWX-31114 AHF 30710 AHF 28553 TMI 67502 sNIP-37881 sNIP-37909

Table 1.1: (continued)

Country	Type	Institution	Operator(s)	Instrument(s)
RA V (South-West Pacific)				
Australia	RRC	Bureau of Meteorology, Mel- bourne	Bruce Forgan Michael Milner	HF 27160 RA VI (Europe)
				TMI 69137

Table 1.1: (continued)
$\left.\begin{array}{|lllll|}\hline \text { Country } & \text { Type } & \text { Institution } & \text { Operator(s) } & \text { Instrument(s) } \\ \hline \text { Spain } & \text { NRC } & \text { AEMET, Madrid } & \begin{array}{l}\text { Irene Melero- } \\ \text { Asensio } \\ \text { Ana Díaz-Rodríguez }\end{array} & \text { PMO6-0105 } \\ \text { Juan Moreta- } \\ \text { González }\end{array}\right]$

Table 1.2: IPC-XII Participation: Various Institutions and Manufacturers

Country	Institution	Participant(s)	Instrument(s)
Argentina	Universidad Nacional de Luján	Adrián Jorge Roldán	TMI-67605
Chile	Fundacion Fraunhofer Chile	Alan Pino	CHP1-100378
	Res, Santiago	Rodrigo Escobar	CHP1-100384
		Cristián Cortés Marcelo Selgado	CHP1-100385
China	CIOMP, Changchun, Jilin	Wei Fang	SIAR-2C
		Yupeng Wang	SIAR-4A
		Hongrui Wang	SIAR-4B
		Yang Luo	SIAR-4D
Canada	COFOVO Energy, Ottawa, ON	Viktar Tatsiankou	SolarSIM-D1-SN102
			SolarSIM-D1-SN103
			SolarSIM-D1-SN112
			SolarSIM-D1-SN113
Germany	PTB, Braunschweig	Stefan Winter	PMO6-1104
		Dirk Friedrich	CMP22-140007
			CMP22-140044
			CMS-849335
			SHP1V-130042
Germany	Black Photon Instrument, Freiburg	Joachim Jaus	MS56-P13027

Table 1.2: (continued)

Country	Institution	Participant(s)	Instrument(s)
Germany	PV Performance Labs, Freiburg	Anton Driesse	-
Italy	European Commission JRC, Ispra, Varese	Willem Zaaiman Roberto Galleano Germana Trentadue	PMO6-81109 PMO6-911204 NIP-21451E6 NIP-23927E6 NIP-25738E6 NIP-26626E5 CH1-060460 CH1-930018 CH1-040370 CHP1-110533 MS56-12036 MS56-12039 TMI 68835
India	NIWE, Chennai, Tamil Nadu	Karthik Ramanathan	$\begin{aligned} & \text { PMO6-1110 } \\ & \text { AHF-36766 } \end{aligned}$
Japan	EKO Instruments CO., Ltd., Tokyo	Akihito Akiyama William Beuttell Kazunori Shibayama Kees Hoogendijk	$\begin{aligned} & \text { PMO6-850402 } \\ & \text { PMO6-0816 } \\ & \text { MS56-P12023 } \end{aligned}$
Japan	Ishikawa Trading Co., Ltd., Tokyo	Kazuhiko Ohkubo Kotaro Makino Keiji Ishikawa Yanqui Xue	$\begin{aligned} & \text { IRS02-1504 } \\ & \text { AHF-33396 } \end{aligned}$
Russian Federation	VNIIOFI, Moscow	Svetlana Morozova Mariia Pavlovich	MAR-1-3 MAR-1-4
Sweden	SP Swedish National Testing and Research Institute, Borås	Stefan Källberg Anne Andersson	HF 15744
South Africa	GeoSUN Africa, Stellenbosch	Anro le Roux Sophie Mulaudzi	AHF-31117
Spain	CIEMAT, Madrid	Jose Balenzategui	AHF 28486 PMO6-0301 NIP-35356E6
Taiwan POC	National Central University, Taoyuan City	Sheng-Hsiang Wang	CHP1-100304 AHF-31102

Table 1.2: (continued)

Country	Institution	Participant(s)	Instrument(s)
Thailand	Silpakorn University, Nakhon Pathom	Serm Janjai Somchit Janjai Somjet Pat- tarapanitchai Sumaman Buntoung Pranomkorn Choosri	AHF 36013
The Netherlands	Hukseflux Thermal Sensors, Delft	Kees van den Bos Dorine van der Vlies Eric Hoeksema Bart van der Meer	DR01-8348 DR01-8377 DR02-9191 DR02-9210 DR02-9212 DR04-13001 DR04-13002 CP
The Netherlands	Kipp \& Zonen BV, Delft	Ilja Staupe Marc Korevaar Joop Mees	PMO6-0103 CHP1-090127 CHP1-121042 CHP1-REF2 SHP1-110005
USA	Argonne National Lab, Billings OK	Craig Webb	AHF-28968
USA	ATLAS-DSET Laboratories, Phoenix AZ	Duncan Maciver	AHF 17142 AHF-28556
USA	NASA Langley, Hampton VA	Fred Denn	AHF 31041 AHF 31105
USA	National Renewable Energy Lab., Golden CO	Ibrahim Reda Afshin Andreas	AHF 23734 AHF 28968 AHF 29220 AHF 30713 TMI 68018
USA	The Eppley Laboratory Inc., Newport RI	John Hickey Tom Kirk	AHF 14915 AHF 27798 sNIP-37441E6
USA	ISO-CAL North America, LCC, Phoenix AZ	Erik Naranen	$\begin{aligned} & \text { AHF-37816 } \\ & \text { AHF-28560 } \end{aligned}$
USA	Campbell Scientific, Inc., Logan UT	Matthew Perry Ajay Singh	-

1.4 Data Acquisition and Evaluation

The signals from the WSG instruments and additional WRC radiometers were acquired by a data acquisition system based on 18 National Instruments PXI-4065 6.5-digit digital multimeters with NI PXI-2501 24-channel multiplexers. The system was controlled by a LabView application ("DAQ2010") running on an industrial PC and operated flawlessly. A separate LabView application triggered the aural and visual timing signals on the measurement field as well as the initialization and readout of the data entry forms for manually operated instruments (see below). This system is very robust and flexible, allowing to add/remove pyrheliometers without need to re-initialize the software and to analyze and visualize the measurements in near-real-time.

The participating pyrheliometers were operated with their standard pointing and data acquisition equipment, either manually or automated.

The data from the manually operated instruments were typed into a java based web interface by the operator. WLAN connections were used to initialize the web interface and to upload its content to the central data acquisition computer at end of each measurement series. Laptop computers have been provided by the WRC, if needed. Written records were kept for backup purposes and to double-check for typing errors in the web interface.

Computer controlled data acquisition systems had to run on CET (Central European Standard Time) and be synchronized to the basic measurement cadence (see below). A dedicated directory on the FTP server was provided for uploading the measurements. The prescribed file naming and format convention with three columns corresponding to date, time, and irradiance was observed by most participants. All data were ingested into the data acquisition and evaluation system at the end of each measurement day.

1.4.1 Timing of the Measurements

The measurements were taken in series of 21 minutes with a basic cadence of 90 seconds. The starting time of each series was either on the full hour or the minute $x x: 30$. Where needed, electrical calibrations and/or zero readings were completed before the starting time ${ }^{1}$. Voice announcements and acoustic signals together with a visual indicator on the measurement field informed the participants about the starting times and progress of the measurement series'. A network time server or a digital reference clock on the measurement field could be used to synchronize all data acquisition systems. The time until the next measurement was also indicated on the web interface for manual operators. The timing for the each type of instrument was as follows ${ }^{2}$:

- Ångström pyrheliometers: Before the start and after the end of the run the zero of the instrument was established. Alternating right and left strip readings were performed, starting with the right hand strip exposed to the sun. The following readings were paired as L-R, R-L, etc., yielding a total of 12 irradiance values per series.
- PAC3: the calibration phase started with the shutter closed and the electrical heater ${ }^{3}$ switched on for 40 seconds (this was introduced after IPC-III in order to have a well defined thermal state of the instrument independent of the operation sequence before the run). The zero of the thermopile was read 90 seconds after the heater had been switched off again. Then the heater was switched on for another 90 seconds before the heater voltage, current and the thermopile

[^0]signal were read. The calibration sequence ends with the shutter open command 90 seconds before the starting time of the series. Each series produced 14 irradiance readings at 90 -second cadence. After the last reading the shutter was closed.

- HF- and TMI-type pyrheliometers: the calibration phase started with the shutter closed, after 90 seconds the thermopile zero was read and the electrical heater ${ }^{3}$ turned on during 90 seconds. At the end of the heating phase the heater voltage, current and thermopile signal were read. The calibration sequence ends with the shutter open command, 90 seconds before the starting time of the series. Each series produced 14 irradiance readings at 90 -second cadence (11 irradiance readings via the web interface). After the last reading the shutter was closed.
- PMO-, SIAR- and CROM-type pyrheliometers: The measurements started with a reference phase (shutter closed) of 90 seconds, followed by a measurement phase (shutter open) of 90 seconds. The closed and open heater voltage and current are read at the end of each reference or measurement phase. This reference/measurement sequence was repeated seven times, followed by an additional reference phase, yielding 7 open and 8 closed readings during each run (6 open and 7 closed via the web interface). PMO2 was read at twice that pace, with a reference phase of 45 seconds and a measurement phase of 45 seconds, producing 13 irradiance values per series. Note that for PMO2 the open heater current and voltage were read 6 times in rapid succession (200 ms cadence) to assess the atmospheric stability.
- Field pyrheliometers with thermopile sensor (NIP, CHP1, MS56, DR0x, etc.): These pyrheliometers started with a zero reading 90 seconds before the starting time of the series, followed by the shutter open command. The thermopile signal was then recorded every 90 seconds, yielding 14 irradiance readings (13 irradiance readings via web interface).
- Other pyrheliometers: Prototype instruments (e.g. CSAR) were using various modes of operation which are specific to their design but were synchronized to the 90 -seconds base cadence.

1.4.2 Data Evaluation

For each instrument the irradiance was calculated according to the appropriate evaluation procedure as listed below. After each day a graphical print-out of the ratios to PMO2 was put on display in the "Carl Dorno" room at Hotel Seehof to be reviewed by the participants. This simple but effective measure of quality control revealed instrumental problems in several cases which subsequently could be fixed quickly.
"Quick-look" print-outs were also produced at any time during the measurement day when an instrument was suspected to malfunction.

The procedure used to calculate the irradiance S of each instrument type is described below. The notations are:
$V_{\text {th }} \quad$ output of the thermopile
$\mathrm{U}_{\mathrm{h}}, \mathrm{U}_{\mathrm{i}}$ voltage across the heater (index h) or across the standard resistor (index i)
$R_{n} \quad$ standard resistor (For PMOx-type radiometers R_{n} is often included in C_{1}.)
$\mathrm{C}_{1} \quad$ calibration factor (see Table 2.2)
$\mathrm{C}_{2} \quad$ correction factor for lead heating (see Table 2.2)
P electrical power in the active cavities

- Ångström-pyrheliometers: the current through the right or left strip was measured as voltage drop across a standard resistor and the irradiance was obtained as:

$$
\mathrm{S}=\mathrm{C}_{1} \frac{\mathrm{U}_{\mathrm{i}}(\text { left }) \mathrm{U}_{\mathrm{i}}(\text { right })}{\mathrm{R}_{\mathrm{n}}^{2}}
$$

This corresponds to the geometric mean of the irradiances at the time of right and left readings. Thus, the ratio to WRR was calculated using the geometric mean of the WSG irradiances at the corresponding instances.

- PAC3, HF, and TMI type pyrheliometers: the irradiance was calculated from the thermopile output $\mathrm{V}_{\text {th }}$ (irrad) when the receiver was irradiated. The sensitivity was determined by the calibration during which the cavity was shaded and electrically heated and U_{h} and U_{i} were measured together with the corresponding thermopile output $\mathrm{V}_{\mathrm{th}}(\mathrm{cal})$. Furthermore, the zero of the thermopile $V_{\text {th }}$ (zero) was measured and subtracted from all thermopile readings.

$$
\mathrm{S}=\mathrm{C}_{1} \frac{\mathrm{~V}_{\text {th }}(\text { irrad })-\mathrm{V}_{\text {th }}(\text { zero })}{\mathrm{V}_{\mathrm{th}}(\text { cal })-\mathrm{V}_{\text {th }}(\text { zero })} \frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{n}}}\left(\mathrm{U}_{\mathrm{h}}-\frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{n}}} \mathrm{C}_{2}\right)
$$

- PMO-, SIAR- and CROM-type pyrheliometers: the irradiance was obtained from P (closed) averaged from the closed values before and after the open reading P (open).

$$
\mathrm{S}=\mathrm{C}_{1}(\mathrm{P}(\text { closed })-\mathrm{P}(\text { open }))
$$

The power calculation was done according to the prescription of the instrument type with

$$
\mathrm{P}=\mathrm{U}_{\mathrm{h}}^{2} \quad \text { or } \quad \mathrm{P}=\mathrm{U}_{\mathrm{h}} \mathrm{U}_{\mathrm{i}} \quad \text { or } \quad \mathrm{P}=\mathrm{U}_{\mathrm{h}} \frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{n}}}
$$

The SIAR-type radiometers slightly deviate from this scheme in that they subtract the open power from the preceding closed power rather than the average of the preceding and successive closed reading.

- Field Pyrheliometers with thermoplie sensor: the thermopile reading was divided by the calibration factor after subtraction of the zero point reading ${ }^{4}$.
- PMO2: As during preceding IPCs, PMO2 was used as the reference instrument for the daily summaries because it can be operated fast enough to provide an irradiance value every 90 seconds. The values of PMO2 were obtained with the algorithm for PMO-type pyrheliometers. At the end of the open phase, 6 readings were taken in rapid succession within 1 second. The standard deviation of the 6 readings was used during the final evaluation as a quality control parameter to assess the atmospheric stability during each acquisition sequence (see Sect. 2.1).

1.4.3 Auxiliary Data

The meteorological parameters (air temperature, relative humidity, atmospheric pressure) were obtained from the MeteoSwiss' automated weather station SwissMetNet located at PMOD/WRC (see Sect. 4.5). Wind speed and direction sensors were set up at the south and west corners of the measuring field as well as at the WSG tracker.

A cloud sensor flagged all data points when clouds were within 15 degrees of the Sun. The flagged points were not used to evaluate Ångström type pyrheliometers.

Precision Filter Radiometers (PFR) were used to determine Aerosol Optical Depth (AOD) at four wavelengths ($367.6 \mathrm{~nm}, 412.0 \mathrm{~nm}, 501.2 \mathrm{~nm}$, and 862.4 nm , see Sect. 4.2).

[^1]
1.5 Approvement and Dissemination of the Results

According to Resolution 1 of CIMO-XI an Ad-hoc Group was established to discuss the preliminary results of the IPC-XII, based upon criteria defined by the WRC, evaluate the above reference and recommend the updating of the calibration factors of the participating instruments. It was chaired by Bruce W. Forgan, (Australia, RA V) and composed as follows: Lucky Ntsangwane (South Africa, RA I), Anjit Anjan (India, RA II), Nozomu Ohkawara (Japan, RA II), Gerardo Crabajal Benítez (Argentina, RA III), David Riveros (Mexico, RA IV), Don Nelson (USA, RA IV), Thomas Carlund (Sweden, RA VI), Klaus Behrens (Germany, RA VI). The WRC was represented by Wolfgang Finsterle.

The procedures used to compute the new WRR factors of the WSG and participating instruments are explained in Section 2.2.

Chapter 2 Irradiance Measurements and Results

Measurements were taken on 11 days (2015 September 28-30, October $1-3,5,9,10,12$, and 14). October $8^{t h}$ and $12^{\text {th }}$ were the most productive days, each yielding 17 series' of 21 minutes duration. In total 164 series' were acquired. All data from October $2^{\text {nd }}$ and $5^{\text {th }}$ were rejected due to bad or unstable weather conditions on those days. Of the remaining 9 days all data points that satisfy the following data selection criteria were considered in the final evaluation, resulting in 578 valid irradiance readings for the WRR.

2.1 Data Selection Criteria for the Final Evaluation

The Ad-hoc Group responsible for the approval of the final evaluation procedure (c.f. Sect. 1.5) agreed on the following criteria for the acceptance of IPC-XII data:

1. Any series or part there-of in which the field of view of Ångström pyrheliometers is obscured by local topographic features (e.g. mountain sides) shall not be considered as valid data for the evaluation of the affected instruments.
2. That no measurements be used for Ångström pyrheliometers if a cloud is within 15 degrees of the sun. No measurements will be used for the absolute cavity radiometers (field of view $=5$ degrees) if a cloud is within 8 degrees of the sun.
3. That no measurements be used if the wind speed is greater than $2.5 \mathrm{~m} / \mathrm{s}$.
4. That no data be used if the 500 nm AOD is greater than 0.120 .
5. That an individual point be excluded from the series if the standard deviation of the solar irradiance in a 1 -second period is greater than $1 \mathrm{Wm}^{-2}$ (based on the 6 fast readings by PMO2).
6. That an individual point be excluded if it is not in a contiguous stretch of 6 valid points.
7. That the minimum number of acceptable data points be 150 for the PMO 2 taken over a minimum of three days during the comparison period.
8. The temporal derivative of the circumsolar measurements (provided by Black Photon) must not exceed $2 \mathrm{mV} / \mathrm{s}$, which corresponds to $\approx 0.6 \mathrm{Wm}^{-2} / \mathrm{s}$.

2.2 Computation of the New WRR Factors

2.2.1 WSG Instruments

The WRR factor $W R R_{i, I P C}$ for the WSG instrument $i, i \in\{\mathrm{PMO} 2, \mathrm{CROM} 2 \mathrm{~L}, \mathrm{MK} 67814, \mathrm{HF} 18748$, PAC3, PMO5\}, by definition is the ratio of the WRR to the WSG instrument i averaged over the duration of the IPC:

$$
W R R_{i, I P C}=\left\langle\frac{W R R(t)}{W S G_{i}(t)}\right\rangle_{t}
$$

where $W R R(t)$ is the reference irradiance and $W S G_{i}(t)$ irradiance measured by WSG instrument i at the time t, and $\langle x(t)\rangle_{t}$ denotes the temporal average of $x(t)$. The reference irradiance $(W R R)$ is defined as the mean value of the simultaneous readings of at least four WSG instruments, multiplied by their corresponding WRR factors from the previous IPC. Because the ratios of MK67814 and HF18748 with respect to the WRR were unstable during the past five years these two instruments were not used to compute the reference irradiance during IPC-XII. With the help from the manufacturer (Eplab) and other experts HF18748 and MK67814 could be cleaned and fixed and will be considered to transfer the WRR for the coming inter-IPC period. With $j \in\{\mathrm{PMO} 2, \mathrm{CROM} 2 \mathrm{~L}, \mathrm{PAC} 3, \mathrm{PMO} 5\}$ we calculate the reference irradiance as

$$
W R R(t)=\left\langle W S G_{j}(t) * W R R_{j, \mathrm{IPC}-\mathrm{xI}}\right\rangle_{j}
$$

We thus get

$$
W R R_{i, \mathrm{IPC}-\mathrm{xII}}=\left\langle\frac{\left\langle W S G_{j}(t) * W R R_{j, \mathrm{IPC}-\mathrm{xI}\rangle_{j}}\right\rangle_{t}, ~ \text {, }, \text { GGi }(t)}{}\right.
$$

where $i \in\{\mathrm{PMO} 2, \mathrm{CROM} 2 \mathrm{~L}, \mathrm{MK} 67814, \mathrm{HF} 18748, \mathrm{PAC} 3, \mathrm{PMO} 5\}$ and $j \in\{\mathrm{PMO} 2, \mathrm{CROM} 2 \mathrm{~L}$, PAC3, PMO5\}.

2.2.2 Participating Instruments

For each participating instrument k the new WRR factor is calculated according to

$$
W R R_{k, \mathrm{IPC}-\mathrm{XII}}=\left\langle\frac{W R R(t)}{\operatorname{Irr_{k}}(t)}\right\rangle_{t}
$$

where $\operatorname{Irr} r_{k}(t)$ is the irradiance measured by the instrument k at the time t and $W R R(t)$ the reference irradiance at time t.

Temporal averaging is done by fitting a gaussian to the distribution of WRR-to-instrument ratios. Outliers are sucessively removed until the ratios are normally distributed with a probability higher than 90%, or until all ratios are within a certain range of their arithmetic mean value ${ }^{1}$.

The new WRR factors for the WSG and all participating instruments are listed in Table 2.2.

2.3 Status of the WSG and Transfer of the WRR

The main objective of the periodic IPCs is the dissemination of the World Radiometric Reference (WRR) in order to ensure worldwide homogeneity of solar radiation measurements. The WRR is realized by the World Standard Group (WSG) at PMOD/WRC, which is frequently inter-compared to detect possible deviations of individual WSG-radiometers with respect to the group average and to ensure the stability of the WRR. In addition to this internal stability check the stability of the WRR is assessed during IPCs by comparing the WSG to other pyrheliometers that have participated in previous IPCs.

Since IPC-XI, which was held in 2010, two member instruments of the WSG failed in internal stability checks. The instrument HF18748 produced unstable irradiance readings throughout most of the last inter-IPC period. The sensitivity of MK67814 also dropped gradually starting in 2014. Non-intrusive checks of both instruments did not reveal any contamination in their cavities. However, during IPC-XII both instruments were opened by the manufacturer (Eplab) and other experts and

[^2]Table 2.1: New WRR-factors for the WSG instruments computed using PMO2, PMO5, CROM2L, and PAC3 and the IPC-XI WRR-factors.

Instrument	WRR factor IPC-XI	WRR Factor IPC-XII	Standard Uncertainty $\frac{\sigma}{\sqrt{N-1}}[p p m]$	\# of points N	Relative Change of WRR Factor $[p p m]$
PMO2	0.998623	$\mathbf{0 . 9 9 8 1 8 9}$	33	576	-435
PMO5	0.999052	$\mathbf{0 . 9 9 9 3 9 5}$	22	578	343
CROM2L	1.003157	$\mathbf{1 . 0 0 3 1 1 8}$	21	578	-39
MK67814	1.000458	$\mathbf{1 . 0 0 1 7 0 2}$	76	566	1244
PAC3	1.002117	$\mathbf{1 . 0 0 2 1 9 0}$	23	576	73
HF18748	0.997138	$\mathbf{0 . 9 9 8 2 5 8}$	47	578	1120

thoroughly cleaned, including the cavities. After the cleaning, both instruments appeared to have recovered and performed reasonably stable over the remaining two days of the IPC-XII. Nevertheless, they were not considered for the calculation of the new WRR but will hopefully help to transfer the WRR to the next IPC.

The remaining four WSG instruments (PMO2, PMO5, CROM2L, PAC3) did not show any irregularities and are thus considered stable over the past five years. The new WRR is calculated based on the average readings of these four radiometers.

Table 2.2: The new WRR factors for the participating instruments

Instrument	C_{1}	C_{2}	R_{n} Ω	WRR Factor	σ ppm	N	Country/ Owner
A13439	4426.32		1000	$\mathbf{1 . 0 0 3 4 5 6}$	1356	272	Slovakia
A-15192	4494.95			$\mathbf{1 . 0 3 0 4 1 3}$	6019	497	Austria
A576	5885.13		1000	$\mathbf{0 . 9 9 0 8 4 8}$	5360	70	Nigeria
ADARA-B	5000			$\mathbf{1 . 0 7 2 2 6 7}$	5064	527	WRC
ADARA-C	5000			$\mathbf{1 . 1 0 5 4 3 5}$	7244	519	WRC
AHF-0000	2.0355			$\mathbf{1 . 0 0 0 3 0 7}$	863	516	JRC Italy
AHF-14915	20010			$\mathbf{0 . 9 9 9 5 4 2}$	942	474	Eppley USA
AHF-14917	2			$\mathbf{0 . 9 9 7 9 0 0}$	684	507	NOAA USA
AHF-17142	19982	0.06648		$\mathbf{0 . 9 9 7 9 4 6}$	676	370	ATLAS-DSET USA
AHF18742	20089.26	0.066	10000	$\mathbf{1 . 0 0 4 5 0 6}$	2801	310	India
AHF-23734	2.002			$\mathbf{0 . 9 9 8 1 8 7}$	608	523	NREL USA
AHF-27798	20020			$\mathbf{0 . 9 9 8 6 5 4}$	1037	473	Eppley USA
AHF-28486	2.001			$\mathbf{0 . 9 9 7 3 1 8}$	629	280	Spain
AHF-28553	19986			$\mathbf{0 . 9 9 7 7 3 9}$	630	498	NOAA USA
AHF-28556	1.999	0.066		$\mathbf{0 . 9 9 5 4 0 8}$	913	327	ATLAS-DSET USA
AHF-28560	2.0028	0.06648		$\mathbf{0 . 9 9 9 2 8 3}$	1855	346	ISO-Cal North
							America USA
AHF-28968	19980.2			$\mathbf{0 . 9 9 7 6 2 9}$	630	519	ARM/SGP USA
AHF-29220	19999			$\mathbf{0 . 9 9 7 4 8 5}$	619	523	NREL USA
AHF-29223	19998			$\mathbf{1 . 0 0 3 2 1 9}$	768	198	Mexico
AHF-30110	1.9999			$\mathbf{1 . 0 6 3 4 7 1}$	801	346	KACARE Saudi

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	$\begin{gathered} R_{n} \\ \Omega \end{gathered}$	WRR Factor	$\begin{gathered} \sigma \\ \mathrm{ppm} \end{gathered}$	N	Country/ Owner
AHF-30112	19936.7			1.010501	2428	173	Argentina
AHF-30710	19999			1.000970	874	512	NOAA USA
AHF-30713	19989			0.997231	637	525	NREL USA
AHF-31041	19999.2			0.996394	689	484	NASA Langley USA
AHF31102	1.99992	0.066	1000	1.046871	2278	222	Taiwan
AHF31103	19989	0.066	10000	0.999345	1056	353	Egypt
AHF-31105	1.9989			0.998657	732	486	NASA Langley USA
AHF-31107	1.99892			1.047428	796	254	KACARE Saudi Arabia
AHF-31109	1.9989	0.066	10000	0.997798	1035	282	South Africa
AHF-31110	19989	0.066		0.997038	668	495	United Kingdom of Great Britain and Northern Ireland
AHF-31117	1.9989			0.999042	706	489	GeoSUN South Africa
AHF32455	20009.2			1.001380	641	574	WRC
AHF-33396	1.9988			0.997184	947	487	AIST Japan
AHF-36011	1.99737			1.000005	597	436	China
AHF-36013	1.9925			0.999802	738	326	Silpakorn University Thailand
AHF-36014	1.99452			1.001494	647	446	Republic of Korea
AHF-37813	1.9979			1.000461	689	490	United Kingdom of Great Britain and Northern Ireland
AHF-37814	2.013			1.001054	605	282	Slovakia
AHF-37815	20011	0.066		0.998679	697	500	Japan
AHF-37816	1.9998	0.06648		0.999458	721	248	ISO-Cal North America USA
AWX-31114	1.99892			1.001209	691	488	NOAA USA
AWX-32448	1			0.999986	736	395	NOAA USA
AWX-33393	2.0009			0.999885	692	395	Sweden
CH1-020283	4.06			0.993817	1216	482	KNMI The Netherlands
CH1-040370	10.48			0.998163	2080	559	JRC Italy
CH1-040380	10.35			0.995440	1768	491	KNMI The Netherlands
CH1-050392	9.62			1.010948	981	561	ISAC-CNR Italy
CH1-060460	10.07			1.004748	1382	556	JRC Italy
CH1-930018	10.85			1.001234	2348	562	JRC Italy
CH1-940072	10330			1.009321	1932	433	Croatia
CHP1-090127	7.68			1.001437	1257	155	K\&Z The Netherlands
CHP1-100245	7.83			1.001156	1281	513	Austria
CHP1-100304	7.79			0.998409	1511	356	Taiwan
CHP1-100378	7.89			1.012082	1859	458	Fraunhofer Chile
CHP1-100384	7.79			1.007443	2683	496	Fraunhofer Chile

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	$\begin{aligned} & R_{n} \\ & \Omega \end{aligned}$	WRR Factor	$\begin{gathered} \sigma \\ \mathrm{ppm} \end{gathered}$	N	Country/ Owner
CHP1-100385	8.17			1.013669	1574	457	Fraunhofer Chile
CHP1-110533	7.8			0.998562	2315	563	JRC Italy
CHP1-110597	8.02			0.995972	1714	460	Fraunhofer Chile
CHP1-121042	7.63			1.000769	1488	328	K\&Z The Netherlands
CHP1-150291	7.64			1.000044	1366	181	Nigeria
CHP1-REF2	7.94			1.004987	871	326	K\&Z The Netherlands
CMP-22-140007	1			0.901274	20575	323	PTB Germany
CMP-22-140044	1			0.916539	22764	410	PTB Germany
CMS-849335	1			1.403575	36626	139	PTB Germany
CP	1			0.879740	9846	34	Hukseflux The Netherlands
CR05R	1			0.997946	1975	135	Belgium
CROM2L	127.687			1.003118	532	578	WRC
CSAR	1			1.002100	1249	247	WRC
DARAAREFB	1			1.002895	1235	117	WRC
DR01-8348	1			0.106812	1697	357	Hukseflux The Netherlands
DR01-8377	1			0.081904	1311	356	Hukseflux The Netherlands
DR02-9191	1			0.084729	1127	354	Hukseflux The Netherlands
DR02-9210	1			0.093140	1789	358	Hukseflux The Netherlands
DR02-9212	11.46			0.982034	1153	304	Hukseflux The Netherlands
DR04-13001	1			0.118583	1146	351	Hukseflux The Netherlands
DR04-13002	1			0.105306	1701	357	Hukseflux The Netherlands
EPAC	10024			1.036229	11271	285	WRC
HF-15744	20020			0.998201	689	282	SP Sweden
HF18748	19989	0.07		0.998258	1139	578	WRC
HF19746	19991.5	0.066	1000	1.000021	1096	266	Hungary
HF-27157	20037.6			0.999084	936	456	Germany
HF-27159	20030			0.999438	634	477	KNMI The Netherlands
HF-27160	20030			0.997425	625	515	Australia
HF27162	20020	0.066	1000	0.999543	1287	191	Israel
HF27796	19986.1	0.066	1000	0.996033	1459	271	Thailand
HF-30497	19943.8			0.999590	600	483	Czech Republic
IRS02-1504	1			0.991175	5447	297	AIST Japan
LINKE-700198	51.214			1.000992	4795	287	South Africa
MAR-01-03	1			0.999953	595	394	VNIIOFI Russian Federation

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	$\begin{gathered} R_{n} \\ \Omega \end{gathered}$	WRR Factor	$\begin{gathered} \sigma \\ \mathrm{ppm} \end{gathered}$	N	Country/ Owner
MAR-01-04	1			0.999536	761	395	VNIIOFI Russian Federation
MK67814	10007			1.001702	1796	566	WRC
MS56-12036	1			0.982223	7424	536	JRC Italy
MS56-12039	1			0.998848	5528	557	JRC Italy
MS56-P12023	1			1.022350	1429	547	EKO Japan
MS-56-P13027	8.486			0.995881	2123	264	Black Photon Germany
NIP-21451E6	8.42			1.005957	6949	559	JRC Italy
NIP-23927E6	1			1.000885	7207	554	JRC Italy
NIP-25738E6	7.92			0.991889	6275	540	JRC Italy
NIP-26626E6	1			1.000334	4504	550	JRC Italy
NIP-31144E6	8.04			0.996836	4753	561	WRC
NIP-35356E6	1			1.011018	2691	234	CIEMAT Spain
PAC3	9962.6	0.07		1.002190	552	576	WRC
PMO2	600.1634			0.998189	798	576	WRC
PMO5	2565.14			0.999395	518	578	WRC
PMO6-0103	51183.3			0.997916	583	177	Kipp and Zonen The Netherlands
PMO6-0105	51065.4			1.001409	642	323	AEMET Spain
PMO6-0105-90	51065.4			1.001215	670	107	AEMET Spain
PMO6-0301	51161.5			1.000183	792	381	Spain
PMO6-0401	50000			1.020799	465	563	WRC
PMO6-0403	50489.5			0.999753	597	414	Japan
PMO6-0404	51237			0.998208	650	307	AEMET Spain
PMO6-0404-90	51237			0.998593	562	101	AEMET Spain
PMO6-0405	50927			0.999265	635	469	Germany
PMO6-0801	1			1.053402	751	70	WRC
PMO6-0803	51221			1.000335	522	542	WRC
PMO6-0804	51397.2			0.999908	609	357	Lithuania
PMO6-0808	50479			0.999421	679	430	China
PMO6-0810	50950.9			0.999918	548	418	France
PMO6-0816	50989.1			0.999947	1688	338	EKO Japan
PMO6-0817	51106.3			0.999516	624	312	Russian Federation
PMO6-1102	51295.5			0.999389	1462	215	Mexico
PMO6-1104	51231.89			1.000194	575	441	PTB Germany
PMO6-1105	1			1.025664	517	565	WRC
PMO6-1106	1			1.027588	605	542	WRC
PMO6-1107	1			1.024318	596	549	WRC
PMO6-1109	51250.1			0.998732	990	277	Croatia
PMO6-1111	1			1.023764	516	561	WRC
PMO6-1112	1			1.028274	614	547	WRC
PMO6-5	50865.1			0.998288	690	466	Germany
PMO6-7	1			0.999681	845	474	Switzerland
PMO6-79-122	600			1.000050	649	563	WRC

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	$\begin{gathered} R_{n} \\ \Omega \end{gathered}$	WRR Factor	$\begin{gathered} \sigma \\ \mathrm{ppm} \end{gathered}$	N	Country/ Owner
PMO6-80022	23.915			0.997891	514	575	WRC
PMO6-81109	600.035			0.998317	623	540	JRC Italy
PMO6-811108	24.101			1.000083	649	417	Sweden
PMO6-850404	1207.29			0.998033	735	307	South Africa
PMO6-850405	24.194			0.998919	569	324	Estonia
PMO6-850406	23.9922			1.001992	927	323	China
PMO6-850410	609.17			0.990976	2380	413	Chile
PMO6-911204	601.7356			0.999446	942	539	JRC Italy
SHP1-110005	1			0.998586	1511	328	K\&Z The Netherlands
SHP1V-130042	7.94			1.001614	1790	466	PTB Germany
SIAR-2A	1			0.991432	2535	221	WRC
SIAR-2B	1			1.000941	2227	210	WRC
SIAR-2C	1			0.998949	753	392	CIOMP China
SIAR-4A	1			0.998445	807	405	CIOMP China
SIAR-4B	1			0.996734	882	395	CIOMP China
SIAR-4D	1			0.995917	966	392	CIOMP China
SNIP-37441	8.32			0.998375	2014	484	Eppley USA
SNIP-37881	1			1.000939	1288	532	NOAA USA
SNIP-37909	1			1.000501	1489	539	NOAA USA
SOLARSIM-D1- SN102	1			0.999674	1440	425	COFOVO Energy Canada
SOLARSIM-D1- SN103	1			0.998951	2206	424	COFOVO Energy Canada
SOLARSIM-D2SN112	1			0.994610	1957	426	COFOVO Energy Canada
SOLARSIM-D2- SN113	1			0.999494	2534	430	COFOVO Energy Canada
TMI-67502	1.0039			1.000999	1102	487	NOAA USA
TMI67605	1.0025			0.998546	2140	116	Argentina
TMI-68018	1.0046			0.996597	667	522	NREL USA
TMI-68025	1.002			0.998133	960	453	Austria
TMI-68835	1.00383			1.000714	764	523	JRC Italy
TMI-69137	10020			1.002150	770	513	Australia

2.4 External stability check of the WSG

In Section 2.3 the stability of the WSG was checked by analyzing the trends of individual members of the WSG with respect to the group's average. Here we present an external assessment of the stability of the WSG with respect to all cavity radiometers which have participated in at least two IPCs since 1980 (c.f. Fig. 2.1). This analysis confirms the long-term stability of the WSG within the required uncertainty level of $3000 \mathrm{ppm}(0.3 \%)$. Compared to IPC-XI (2010) the WRR factors of 63 cavity radiometers has changed by 167 ppm on average, with a statistical uncertainty of 352 ppm
(1- σ). We thus conclude that the WSG has not significantly drifted over the past five years. For completeness the history of WRR factors since 1980 (IPC-V) is given in Table 2.3 for all participating instruments. Note that in this table the actual WRR factors are listed while normalized factors (with respect to C_{1}) were used for assessing the stability of the WSG. Normalization was necessary because some instruments changed their calibration factors C_{1}, which produces spurious changes in their WRR factors.

Table 2.3: The history of WRR factors. In this table the actual WRR factors are listed. They depend on the calibration constant C_{1} which was used and which may have changed over time. In the WSG-stability analysis presented in Section 2.4 and Figure 2.1 these factors were re-normalized accordingly.

Instrument	IPC-V	IPC-VI	IPC-VII	IPC-VIII	IPC-IX	IPC-X	IPC-XI	IPC-XII
A576	1.020130	1.005233	1.001071	1.000460	0.997370	1.000050	0.990369	0.990848
A13439				1.022990	1.002370	1.003291	1.001350	1.003456
A15192			0.99913	1.00189	1.00157	1.002165		1.030413
CH1-050392							1.000250	1.010939
CH1-020283							0.997677	0.993817
CH1-060460							1.002330	1.004742
CH1-930018							1.000750	1.001242
CH1-940072						1.005958	1.007580	1.009321
CHP1-100245							1.000490	1.001156
NIP-21451E6							0.999193	1.005944
NIP-25738E6							0.998843	0.991885
NIP-31144E6							0.997184	0.996824
EPAC11402					0.999250	1.000560	1.000680	1.036265
HF15744	1.000640	1.000030	0.999650	0.999470	0.999160	0.998034	0.998085	0.998201
HF19746	0.999520	0.999940	1.001603	0.999190	0.999660	0.998782	0.998886	1.000021
HF27157				1.000380	0.999020	0.998722	0.999647	0.999084
HF27159			0.999271	0.998880		0.998004	1.000020	0.999438
HF27162			1.000370	1.000960	1.000820	1.000180	0.999212	0.999543
HF27796					0.996910	0.996979	0.997204	0.996033
AHF29223				0.997450	0.997470	0.996761	0.997352	1.003219
AHF14915	0.998751	0.998421	0.999980	1.000460	1.000260	0.999640	0.999682	0.999542
AHF17142	0.998801	0.997733	0.998901	0.998860	0.998930	0.999141	0.998358	0.997946
AHF18742						1.003773	1.002280	1.004506
AHF27160			0.997267	0.997090	0.996770	0.996910	0.996467	0.997424
AHF27798			0.998363	0.998980	0.999880	0.999410	0.999018	0.998654
AHF28486							0.997308	0.997318
AHF28553				0.997560	0.997330	0.996105	0.996842	0.997739
AHF28968				0.998720	0.998660	0.997765	0.997734	0.997627
AHF29220				0.998620	0.998460	0.997556	0.997691	0.997482
AHF30497					0.997740	0.999350	0.999623	0.999589
AHF30713					0.998610	0.997512	0.997548	0.997228
AHF31041					0.998130	0.996294	0.996286	0.996392
AHF31103					0.998990	0.999640		0.999345
AHF31105						1.001649	0.999964	0.998656
AHF31110					0.997890	0.997211	0.996431	0.997038

Table 2.3: (continued)

Instrument	IPC-V	IPC-VI	IPC-VII	IPC-VIII	IPC-IX	$I P C-X$	IPC-XI	IPC-XII
AHF31117							0.998861	0.999042
AHF32455						0.999090	1.000280	1.001380
AHF33396						0.997951	0.998079	0.997184
AHF36011							0.998226^{2}	1.000005
AHF36013							1.058110	0.999802
AWX31114							1.001240	1.001209
AWX32448					1.00031	0.999874	0.999939	0.999986
AWX33393						0.997281	0.999362	0.999885
TMI67502	0.999290	0.998471	1.000390	0.998660	0.999660	0.999480	0.999294	1.000999
TMI68018			0.998692		0.998480	0.997138	0.996804	0.996601
TMI68025			0.999460	0.999860	1.000060	0.998135	0.998613	0.998133
TMI68835							1.000980	1.000723
MAR-1-3				0.999610			0.999991	0.999953
PMO6-5	1.006756	1.000100	0.998602	0.997980	1.000530	0.999960	0.999116	0.998288
PMO6-79-122			0.996890	0.999970	0.999860	1.000390	0.999401	1.000051
PMO6-80022		1.000230	0.996890	0.996130	0.996990	0.997944	1.003080	0.997891
PMO6-811108		0.999210	0.999970	1.000110	0.999970	0.998114	1.000660	1.000083
PMO6-811109					0.999460	0.998412	0.998577	0.998315
PMO6-850405				1.000370	0.999290	0.999191	1.000560	0.998919
PMO6-850406					1.000320	0.999440	1.000200	1.001992
PMO6-850410				1.001800	1.015280	0.987030	0.990890	0.990976
PMO6-911204					1.000810	0.999011	0.999711	0.999445
PMO6-0301							1.000588	1.000183
PMO6-0403							1.000160	0.999753
PMO6-0405							0.999684	0.999265
PMO6-0804							0.999914	0.999908
SIAR-2A						1.000623	0.991696	0.991360
SIAR-2B						0.998620	1.000290	1.000895
SIAR-2C						1.000087	0.999839	0.998949

[^3]

Figure 2.1: The historic evolution of the WRR factors of all cavity radiometers which have participated in at least two consecutive IPC's since 1980 (IPC-V). Note that in this analysis all WRR factors are normalized to the calibration constant C_{1} which was used at the time. The thick magenta line is the average of all participating cavities. This line is interpreted as the inter-IPC stability of the WSG. In this metric any potential drift of the WSG between IPC-XI (2010) and IPC-XII (2015) was below the detection limit indicated by the $1-\sigma$ error bars. (The measured drift is $0.017 \pm 0.035 \%$.)

Chapter 3 Conclusions and Recommendations

Despite the partial failure of two WSG instruments (MK67814 and HF18748, c.f. Sect. 2.4) the WRR is considered stable within the limits required by the WMO-CIMO Guide. The new WRR factors are calculated based on the average readings of PMO2, PMO5, CROM2L, and PAC3. Compared to IPCXI most participating instruments show insignificant changes in their WRR factors, which confirms the stability of the WRR. The recommended WRR factors are listed in Table 2.2.

3.1 Graphical Representation of the Results

On the following pages are the data plots for each instrument. The deviation from WRR is plotted in percents. All the points which were used for the analysis (i.e. the points fulfilling the selection criteria listed in Sect. 2.1) have been plotted with a corresponding histogram on the side.

A576: WRR factor $=0.990848, \sigma=0.005311, n=70$

AHF23734: WRR factor $=0.998187, \sigma=0.000608, n=523$

AHF27798: WRR factor=0.998654, $\sigma=0.001036, n=473$

AHF28560: WRR factor $=0.999283, \sigma=0.001855, n=346$

AHF29220: WRR factor $=0.997485, \sigma=0.000618, n=523$

AHF30112: WRR factor=1.010501, $\sigma=0.002454, n=173$

AHF31103: WRR factor $=0.999345, \sigma=0.001055, n=353$

AHF31105: WRR factor $=0.998657, \sigma=0.000732, n=486$

AHF33396: WRR factor=0.997184, $\sigma=0.000945, n=487$

AHF36013: WRR factor=0.999802, $\sigma=0.000739, n=326$

AHF37815: WRR factor=0.998679, $\sigma=0.000696, n=500$

CH1-020283: WRR factor=0.993817, $\sigma=0.001209, n=482$

CH1-040370: WRR factor=0.998163, $\sigma=0.002077, n=559$

CH1-060460: WRR factor=1.004748, $\sigma=0.001389, n=556$

CH1-940072: WRR factor=1.009321, $\sigma=0.001950, n=433$

CHP1-100385: WRR factor=1.013669, $\sigma=0.001596, n=457$

CHP1-121042: WRR factor=1.000769, $\sigma=0.001489, n=328$

CMP-22-140007: WRR factor=0.901274, $\sigma=0.018544, n=323$

CP: WRR factor=0.879740, $\sigma=0.008662, n=34$

CR05R: WRR factor=0.997946, $\sigma=0.001972, n=135$

CSAR: WRR factor=1.002100, $\sigma=0.001252, n=247$

EPAC11402: WRR factor=1.036229, $\sigma=0.011679, n=285$

HF15744: WRR factor $=0.998201, \sigma=0.000688, n=282$

HF27157: WRR factor=0.999084, $\sigma=0.000935, n=456$

AHF30497: WRR factor $=0.999590, \sigma=0.000600, n=483$

IRS02-1504: WRR factor=0.991175, $\sigma=0.005399, n=297$

NIP-21451E6: WRR factor=1.005957, $\sigma=0.006991, n=559$

PAC3: WRR factor $=1.002190, \sigma=0.000553, n=576$

PMO5: WRR factor $=0.999395, \sigma=0.000518, n=578$

PMO6-0103: WRR factor $=0.997916, \sigma=0.000582, n=177$

PMO6-0105-90: WRR factor=1.001215, $\sigma=0.000672, n=107$

PMO6-0301: WRR factor=1.000183, $\sigma=0.000792, n=381$

PMO6-0403: WRR factor $=0.999753, \sigma=0.000597, n=414$

PMO6-0404: WRR factor $=0.998208, \sigma=0.000649, n=307$

PMO6-0405: WRR factor $=0.999265, \sigma=0.000635, n=469$

PMO6-0801D: WRR factor=1.053402, $\sigma=0.000792, n=70$

PMO6-0804: WRR factor $=0.999908, \sigma=0.000609, n=357$

PMO6-0808: WRR factor=0.999421, $\sigma=0.000679, n=430$

PMO6-0810D: WRR factor=0.999918, $\sigma=0.000548, n=418$

PMO6-0816D: WRR factor=0.999947, $\sigma=0.001689, n=338$

PMO6-0817: WRR factor=0.999516, $\sigma=0.000624, n=312$

PMO6-1102: WRR factor $=0.999389, \sigma=0.001462, n=215$

PMO6-1105: WRR factor=1.025664, $\sigma=0.000531, n=565$

PMO6-1107: WRR factor=1.024318, $\sigma=0.000611, n=549$

PMO6-1109: WRR factor $=0.998732, \sigma=0.000990, n=277$

PMO6-1112: WRR factor $=1.028274, \sigma=0.000632, n=547$

PMO6-5: WRR factor $=0.998288, \sigma=0.000690, n=466$

PMO6-850404: WRR factor $=0.998033, \sigma=0.000734, n=307$

PMO6-850410: WRR factor=0.990976, $\sigma=0.002359, n=413$

SHP1V-130042: WRR factor=1.001614, $\sigma=0.001794, n=466$

SIAR-2B: WRR factor $=1.000941, \sigma=0.002229, n=210$

SIAR-2C: WRR factor $=0.998949, \sigma=0.000753, n=392$

SIAR-4B: WRR factor $=0.996734, \sigma=0.000880, n=395$

SNIP-37881: WRR factor=1.000939, $\sigma=0.001290, n=532$

SNIP-37909: WRR factor=1.000501, $\sigma=0.001490, n=539$

SolarSIM-D1-SN103: WRR factor=0.998951, $\sigma=0.002204, n=424$

SolarSIM-D2-SN112: WRR factor=0.994610, $\sigma=0.001947, n=426$

TMI67502: WRR factor=1.000999, $\sigma=0.001104, n=487$

TMI67605: WRR factor=0.998546, $\sigma=0.002138, n=116$

TMI68025: WRR factor=0.998133, $\sigma=0.000959, n=453$

TMI68835: WRR factor=1.000714, $\sigma=0.000765, n=523$

Chapter 4 Auxiliary Data

4.1 Direct and Diffuse Irradiance

Direct (WRR) and diffuse irradiance (shaded K\&Z CM22 S/N 020059).

4.2 Airmass and Aerosol Optical Depth (AOD)

A four-channel Precision Filter Radiometer (PFR) was used to determine AOD.

4.3 Scattering Parameters

Ångström exponents (α) from PFR AOD data. Ozon $\left(\mathrm{O}_{3}\right)$ measured by the WRC Brewer \#163.

4.4 Wind Speed

Wind speed and direction were measured near the southern (station 1) and northern (station 2) corners of the measurement field as well as by the WSG tracker and on the rooftop platform. The dots on the wind speed plots indicate gust velocity.

4.5 Meteorological Data

Meteorological parameters measured by the SwissMetNet Davos station of MeteoSwiss (adjacent to IPC-XII measuring field).

Chapter 5 Symposium

5.1 To Build and Share Knowledge

On cloudy, overcast, or rainy days when no measurements were possible the IPC-XII symposium was held. Radiation experts from PMOD/WRC as well as many IPC-XII participants presented their work and/or national radiation infrastructure in order to share and build knowledge. Manufacturers of radiation measurement equipment were given the opportunity to present their products.

Over the three weeks, more than 40 talks and presentations were given, most of which are available for download from the ftp site ftp://ftp.pmodwrc.ch/stealth/ipc-xii.

Chapter 6 Supplementary Information

6.1 Addresses of Participants

Anjit Anjan

INDIA METEOROLOGICAL DEPT
CentralL Radiation Lab ,Surface Instrument Division, IMD,Shivaji Nagar
411005 Pune Maharashtra
India
phone: +91-20-25865425,25535411
email: anjit_anjan@yahoo.com
Naif Alsaheel
K.A.CARE

Akaria Plaza, Ulaya St., Riyadh 11451, Saudi Arabia
11451 Riyadh
Saudi Arabia
phone: 966543666963
email: n.saheel@energy.gov.sa

Afshin Andreas
NREL
15013 Denver West Blvd
Golden, Colorado 80401
USA
phone: 303-384-6383
email: afshin.andreas@nrel.gov
Alexander Baskis
Israel Meteorological Service
PoBox-25
50250 Bet Dagan
ISRAEL
email: balex@ims.gov.il

Klaus Behrens
DWD Met. Obs. Lindenberg
Am Observatorium 12
D-15848 Tauche OT Lindenberg
Germany
phone: +49-69-8062-5860
email: klaus.behrens@dwd.de

Sumaman Buntoung
Silpakorn University
Department of Physics, Faculty of Science
73000 Nakhon Pathom
Thailand
email: s.buntoung@gmail.com

Akihito Akiyama
EKO Instruments Co.,Ltd.
1-21-8 Hatagaya, Shibuya-ku
151-0072 Tokyo
Japan
phone: +81-3-3469-6713
email: akiyama@eko.co.jp

Anne Andersson

SP Swedish Technical Research
Brinellgatan 4
50462 Borås
Sweden
phone: 46-105165403
email: anne.andersson@sp.se

Mike Baker
Met Office
Fitzroy Road
EX1 3PB Exeter Devon
United Kingdom
phone: 441392884034
email: mike.baker@metoffice.gov.uk
Ralf Becker
DWD Met. Obs. Lindenberg
Am Observatorium 12
D-15848 Tauche OT Lindenberg
Germany
phone: +49-69-8062-5867
email: ralf.becker@dwd.de
William Beuttell
EKO Instruments Co.,Ltd.
1-21-8 Hatagaya, Shibuya-ku
151-0072 Tokyo
Japan
phone: 14089777751
email: beuttell@eko-usa.com
Gerardo Carbajal Benítez
Servicio Meteorológico Nacion
Av. de los Constituyentes 3454
C1427BLS Ciudad Autónoma de Buenos Aires
Argentina
phone: + 541151676767
email: gcarbajal@smn.gov.ar

Thomas Carlund
SMHI
Folkborgsvägen 1
60176 Norrköping
Sweden
email: thomas.carlund@pmodwrc.ch

Pranomkorn Choosri
Silpakorn University
Department of Physics, Faculty of Science
73000 Nakhon Pathom
Thailand
phone: 6634270761
email: pranomkorn_aum@hotmail.com
Cristian Cortes
Fundacion Fraunhofer Chile Res
310 Av. Mariano Sanchez Fontecilla, of 1401
7550296 Santiago
Chile
email: cristian.cortes@fraunhofer.cl

THIERRY DUPRAT
METEO-FRANCE
785 CH DE L'HERMITAGE
84200 CARPENTRAS VAUCLUSE
FRANCE
phone: (33) 490636967
email: thierry.duprat@meteo.fr
Frederick Denn
NASA Langley / SSAI
1 Enterprise parkway
Hampton, Virginia 23666
USA
phone: 757951 1636/or 7578657518
email: frederick.m.denn@nasa.gov

Rodrigo Escobar

Fundacion Fraunhofer Chile Res
310 Av. Mariano Sanchez Fontecilla, of 1401
7550296 Santiago
Chile
email: rodrigo.escobar@fraunhofer.cl

Bryan Fabbri
NASA Langley / SSAI
1 Enterprise parkway
Hampton, Virginia 23666
USA
phone: 7579511639
email: bryan.e.fabbri@nasa.gov

André Chevalier
RMIB
3,Av.Circulaire
1180 Uccle B
Belgium
phone: 003223730602
email: a.chevalier@oma.be
Christian Conscience
RMIB
3,Av.Circulaire
1180 Uccle B
Belgium
phone: 003223730729
email: cch@oma.be

Henri DIEMOZ
ARPA Valle d'Aosta
loc. Grande Charrière 44
11020 Saint-Christophe Aosta
Italy
phone: +39(0)165278576
email: h.diemoz@arpa.vda.it
Ana M. Díaz-Rodríguez
AEMET
c/Leonardo Prieto Castro, 8
28040 Madrid
Spain
phone: +34-915819625
email: adiazr@aemet.es

Steven Dewitte

RMIB
3,Av.Circulaire
1180 Uccle B
Belgium
phone: 003223730624
email: Steven.Dewitte@oma.be

Hector Estevez
Universidad Nacional Autonoma
Av Universidad 3000
4350 México DF
México
phone: $+52(55) 56224139$
email: hectorh@geofisica.unam.mx
Wei Fang
Chinese Academy of Sciences
Dong Nanhu Road 3888, Changchun 130033, China
130033 Changchun
China
phone: 86-0431-86176883
email: fangw@ciomp.ac.cn

```
Bruce Forgan
Bureau of Meteorology
7 0 0 \text { Collins St}
3 0 0 8 \text { Docklands Vic}
Australia
phone: +61 396694111
email: b.forgan@bom.gov.au
Dmitrii Frolov
Voeikov MGO
7, Karbyshev st
194021 St-Petersburg -
Russia
phone: (812) 297-43-90
email: tveynkrolkrol@rambler.ru
Emiel Hall
NOAA/ESRL/GMD
3 2 5 \text { Broadway}
Boulder, Colorado }8030
USA
phone: 303 497-4264
email: emiel.hall@noaa.gov
John Hickey
The Eppley Laboratory, Inc.
12 Sheffield Avenue
Newport, RI }284
USA
email: johnh@eppleylab.com
Osamu ljima
Japan Meteorological Agency
1-3-4 Otemachi, Chiyoda-ku
100-8122 Tokyo
Japan
phone: +81-29-851-2572
email: ijima@met.kishou.go.jp
Serm Janjai
Silpakorn University
Department of Physics, Faculty of Science
7 3 0 0 0 ~ N a k h o n ~ P a t h o m ~
Thailand
email:Serm.janjai@gmail.com
Joachim Jaus
Black Photon Instrument
Emmy-Noether-Str.
79110 Freiburg
Germany
phone: 497614791466
email: joachim.jaus@black-photon.de
Wael Khaled
Egyptian Meteorological Auth.
Koubry El Quobba
P.O. Box 11784 Cairo
Egypt
phone: +2 01006072166
email: wael.khaled@ema.gov.eg
Bruce Forgan
Bureau of Meteorology
700 Collins St
3008 Docklands Vic
Australia
phone: +61 396694111
email: b.forgan@bom.gov.au
Dmitrii Frolov
Voeikov MGO
7, Karbyshev st
21 St-Petersburg -
phone: (812) 297-43-90
email: tveynkrolkrol@rambler.ru
Emiel Hall
NOAA/ESRL/GMD
325 Broadway
Boulder, Colorado 80305
USA
email: emiel.hall@noaa.gov
```


John Hickey

```
The Eppley Laboratory, Inc.
effield Avenue
USA
email: johnh@eppleylab.com
Osamu Ijima
Japan Meteorological Agency
1-3-4 Otemachi, Chiyoda-ku
00-8122 Tokyo
phone: +81-29-851-2572
email: ijima@met.kishou.go.jp
Serm Janjai
Silpakorn University
Department of Physics, Faculty of Science
73000 Nakhon Pathom
Thailand
email: Serm.janjai@gmail.com
Joachim Jaus
Black Photon Instrument
Emmy-Noether-Str.
Freiburg
phone: 497614791466
email: joachim.jaus@black-photon.de
Wael Khaled
Egyptian Meteorological Auth.
Koubry El Quobba
P.O. Box 11784 Cairo
Egypt
email: wael.khaled@ema.gov.eg
```

Dirk Friedrich
PTB
Bundesallee 100
38116 Braunschweig
Deutschland
phone: +49 5315924141
email: dirk.friedrich@ptb.de
Eric HOEKSEMA
Hukseflux Thermal Sensors
Delftechpark 31
2628XJ Delft The Netherlands
The Netherlands
phone: 31-15-2142669
email: eric@hukseflux.com
Guy Harrison-Roberts
Met Office
Fitzroy Road
EX1 3PB Exeter Devon
United Kingdom
phone: 441392885533
email: guy.harrison-roberts@metoffice.gov.uk
Kees Hoogendijk
EKO Instruments Co.,Ltd.
1-21-8 Hatagaya, Shibuya-ku
151-0072 Tokyo
Japan
phone: 31703050117
email: kees.hoogendijk@eko-eu.com
Keiji Ishikawa
ISHIKAWA TRADING CO., LTD.
4-6-10, Shinkawa
181-0004 Mitaka-shi Tokyo
Japan
phone: 81-422-44-5501
email: k.ishikawa@ishikawa-sangyo.co.jp
Somchit Janjai
Silpakorn University
Department of Physics, Faculty of Science
73000 Nakhon Pathom
Thailand

Stefan Källberg
SP Swedish Technical Research
Brinellgatan 4
50462 Borås
Sweden
phone: 46-105165626
email: stefan.kallberg@sp.se
Tom Kirk
The Eppley Laboratory, Inc.
12 Sheffield Avenue
Newport, RI 2840
USA
phone: 14018471020
email: info@eppleylab.com

Wouter Knap
KNMI
Utrechtseweg 297
3731 GA De Bilt
The Netherlands
phone: ++31 302206469
email: knap@knmi.nl
Marc Korevaar
Kipp \& Zonen
Delftechpark 36
2628XH Delft
The Netherlands
email: marc.korevaar@kippzonen.com

Ding Lei
CMA
Meteorological Observation Centre, China Meteorological Administration, No.46, Zhongguancun Nandajie, Haidian District, Beijing, China 100081 100081 Beijing
China
phone: 86-10-68406936
email: dlaoc@cma.gov.cn
DARIUS MIKALAJUNAS
Lithuanian Hydrometeorological
Rudnios str. 6
LT-09300 Vilnius
LITHUANIA
phone: 37064806329
email: darius.mikalajunas@meteo.lt
Duncan Maciver
Atlas-DSET Laboratories
45601 N 47th Avenue
Phoenix, Arizona 85087
USA
phone: 6232011026
email: duncan.maciver@ametek.com
Kotaro Makino
ISHIKAWA TRADING CO., LTD.
4-6-10, Shinkawa
181-0004 Mitaka-shi Tokyo
Japan
phone: 81-422-44-5501
email: kmakino@ishikawa-sangyo.co.jp
Tiemo Mathijssen
KNMI
Utrechtseweg 297
3731 GA De Bilt
The Netherlands
email: tiemo.mathijssen@knmi.nl

Mohamed Korany
Egyptian Meteorological Auth.
Koubry El Quobba
P.O. Box 11784 Cairo

Egypt
phone: +201010404566
email: m_korany2002@yahoo.com
Ingo Kröger
PTB
Bundesallee 100
38116 Braunschweig
Deutschland
phone: +495315924147
email: ingo.kroeger@ptb.de
Yang Luo
Chinese Academy of Sciences
Dong Nanhu Road 3888, Changchun 130033, China
130033 Changchun
China
email: nickclarck@163.com

Brighton Mabasa
South African Weather Service
Private Bag X097
1 Pretoria Gauteng
South Africa
phone: +27 123676088
email: Brighton.Mabasa@weathersa.co.za
Martin Mair
ZAMG
Hohe Warte 38
1190 Vienna
Austria
phone: +43/1/36026-2706
email: martin.mair@zamg.ac.at
Pierre Malcorps
RMIB
3,Av.Circulaire
1180 Uccle B
Belgium
phone: 003223730604
email: Pierre.Malcorps@oma.be
Irene Melero-Asensio
AEMET
c/Leonardo Prieto Castro, 8
28040 Madrid
Spain
phone: +34-9158190259
email: imeleroa@aemet.es

Michael Milner
Bureau of Meteorology
700 Collins St
3008 Docklands Vic
Australia
phone: 61396694122
email: m.milner@bom.gov.au
Svetlana Morozova
VNIIOFI
46, Ozernaya str
119361 Moscow
Russia
phone: (..7 495) 4373700
email: morozova-m4@vniiofi.ru
Erik Naranen
ISO-CAL North America, LLC
36610 N 20th Street
Phoenix, Arizona 85086
USA
phone: +1 (480) 336-8133
email: enaranen@isocalnorthamerica.com
Donald Nelson
NOAA/ESRL/GMD
325 Broadway
Boulder, Colorado 80305
USA
phone: 303 775-0443
email: donald.w.nelson@noaa.gov
Kristjan Nurmela
Estonian Environment Agency
Toravere Station
EE-61602 Toravere Tartumaa
Estonia
phone: +372 5513389
email: kristjan.nurmela@envir.ee
Kazuhiko Ohkubo
ISHIKAWA TRADING CO., LTD.
4-6-10, Shinkawa
181-0004 Mitaka-shi Tokyo
Japan
phone: 81-422-44-5501
email: ohkubo@ishikawa-sangyo.co.jp

Marc Olefs
ZAMG
Hohe Warte 38
1190 Vienna
Austria
phone: $+43 / 1 / 36026-2233$
email: marc.olefs@zamg.ac.at

Juan R. Moreta-González
AEMET
c/Leonardo Prieto Castro, 8
28040 Madrid
Spain
phone: +34 -915819773
email: jmoretag@aemet.es
Sophie Mulaudzi
GeoSUN Africa
Unit 1, CS Africa Building, 1 Meson Street, Techno Park
7600 Stellenbosch Western Cape
South Africa

Katlego Ncongwane
South African Weather Service
Private Bag X097
1 Pretoria Gauteng
South Africa
phone: +27 123676010
email: Katlego.Ncongwane@weathersa.co.za
Lucky Ntsangwane
South African Weather Service
Private Bag X097
1 Pretoria Gauteng
South Africa
phone: +27 123676239
email: Lucky.Ntsangwane@weathersa.co.za
Nozomu Ohkawara
Japan Meteorological Agency
1-3-4 Otemachi, Chiyoda-ku
100-8122 Tokyo
Japan
phone: +81-3-3212-8341
email: ohkawara@met.kishou.go.jp
Olatokunbo Okulaja
Nigerian Meteorological Agency
Bill Clinton Drive, Nnamdi Azikiwe International Airport
9001 Abuja FCT
NIGERIA
phone: +234 8160964048
email: olatokunbo.okulaja@gmail.com
Yong-June PARK
korea Meteorologica administra
61 Yeouidaebang-ro 16-gil Dongjak-gu seoul 156720
Asl/KR/KS013/seoul seoul
Korea
phone: +82-2-2181-0719
email: juni8207@korea.kr

Somjet Pattarapanitchai
Silpakorn University
Department of Physics, Faculty of Science
73000 Nakhon Pathom
Thailand

Mariia Pavlovich

VNIIOFI
46, Ozernaya str
119361 Moscow
Russia
phone: (.. 7495)437 29 92, 7818654
email: pavlovitch-m4@vniiofi.ru
Alan Pino
Fundacion Fraunhofer Chile Res
310 Av. Mariano Sanchez Fontecilla, of 1401
7550296 Santiago
Chile
phone: 56223781660
email: alan.pino@fraunhofer.cl
Jiri Pokorny
Czech Hydromet. Institute
Zamecek 456
50008 Hradec Kralove
Czech Republic
phone: +420 495279263
email: jiri.pokorny@chmi.cz
Anna Pribullova
SHMI
ARC SHMI
05801 Poprad-Ganovce
Slovakia
email: anna.pribullova@shmu.sk
Karthik Ramanathan
NIWE
Velachery- Tambaram Main Road, Pallikaranai, 600100 Chennai Tamil Nadu
India
phone: 91-44-22463996
email: karthik.niwe@nic.in
David Riveros
Universidad Nacional Autonoma
Av Universidad 3000
4350 México DF
México
phone: +52(55)56224141
email: driveros@geofisica.unam.mx

Kazunori Shibayama

EKO Instruments Co.,Ltd.
1-21-8 Hatagaya, Shibuya-ku
151-0072 Tokyo
Japan

Alexander Pavlov
Voeikov MGO
7, Karbyshev st
194021 St-Petersburg -
Russia
phone: (812) 297-43-90
email: aleksandrvpavlov@gmail.com
Matthew Perry
Campbell Scientific, Inc.
815 W 1800 N
Logan, UT 94321
USA
phone: 435-227-9622
email: mperry@campbellsci.com
Fabian Plag
PTB
Bundesallee 100
38116 Braunschweig
Deutschland
phone: +495315924148
email: fabian.plag@ptb.de
Krunoslav Premec
DHMZ
Gric 3
HR-10000 Zagreb
Croatia
phone: +385 14565607
email: krunoslav.premec@cirus.dhz.hr
Jin Qi
NSMC,CMA
No. 46, South Street of Zhong-Guan-Cun
100081 Beijing
China
email: qijin@cma.gov.cn
Ibrahim Reda
NREL
15013 Denver West Blvd
Golden, Colorado 80401
USA
phone: 303-384-6385
email: ibrahim.reda@nrel.gov
Adrián Jorge Roldán
Universidad Nacional de Luján
Ruta 5 y Av.Constitución
6700 Luján Buenos Aires
Argentina
email: roldanadrian@gmail.com

Hussain Shibli
K.A.CARE

Akaria Plaza, Ulaya St., Riyadh 11451, Saudi Arabia
11451 Riyadh
Saudi Arabia
phone: 966504697298
email: h.shibli@energy.gov.sa

Ajay Singh
Campbell Scientific, Inc.
815 W 1800 N
Logan, UT 94321
USA
phone: 435-227-9677
email: asingh@campbellsci.com
Ilja Staupe
Kipp \& Zonen
Delftechpark 36
2628XH Delft
The Netherlands
email: ilja.staupe@kippzonen.com

Viktar Tatsiankou
COFOVO Energy
800 King Edward Avenue, Suite 3014
K1N 6N5 Ottawa ON
Canada
phone: 6135625800×1032
email: viktar.tatsiankou@cofovo.com
Bill To
Black Photon Instrument
Emmy-Noether-Str.
79110 Freiburg
Germany
phone: 497614791466
email: bill.to@black-photon.de
Dorine VAN DER VLIES
Hukseflux Thermal Sensors
Delftechpark 31
2628XJ Delft The Netherlands
The Netherlands
phone: 31-15-2142669
email: dorine@hukseflux.com
Mauro Valdes
Universidad Nacional Autonoma
Av Universidad 3000
4350 México DF
México
phone: +52(55)56224139
email: mauro@geofisica.unam.mx
Hongrui Wang
Chinese Academy of Sciences
Dong Nanhu Road 3888, Changchun 130033, China
130033 Changchun
China
email: wanghongrui@ciomp.ac.cn

Patrick Smith
Atlas-DSET Laboratories
45601 N 47th Avenue
Phoenix, Arizona 85087
USA
phone: 6234657356 Ext 162
email: patrick.smith@ametek.com
Jonathan Tamlyn
Met Office
Fitzroy Road
EX1 3PB Exeter Devon
United Kingdom
phone: 441392886289
email: jonathan.tamlyn@metoffice.gov.uk
Cristhian Timoté
Universidad Los Libertadores
Carrera 16 \# 63A - 68
110821 Bogotá Cundinamarca
Colombie
email: timote13@gmail.com

Kees VAN DEN BOS
Hukseflux Thermal Sensors
Delftechpark 31
2628XJ Delft The Netherlands
The Netherlands
phone: 31-15-2142669
email: kees@hukseflux.com
Luis Valdés
Dirección Meteorológica Chile
Avenida Portales 3450
9170018 Santiago Estación Central
Chile
phone: (56)(2)24364560
email: Ivaldes@meteochile.cl
Yupeng Wang
Chinese Academy of Sciences
Dong Nanhu Road 3888, Changchun 130033, China
130033 Changchun
China
email: wangyp@ciomp.ac.cn

Sheng-Hsiang Wang
National Central University
No. 300, Zhongda Rd., Zhongli District
32001 Taoyuan City
Taiwan
phone: +886-972881003
email: shenghsiang.wang@gmail.com

Craig Webb

Argonne Natiotional Lab
109596 Coal Road
Billings, Oklahoma 74630
USA
phone: 001-331-318-3354
email: craigw@ops.sgp.arm.gov

Jim Wendell
NOAA/ESRL/GMD
325 Broadway
Boulder, Colorado 80305
USA
phone: 303 497-6994
email: jim.wendell@noaa.gov
Yanqun Xue
ISHIKAWA TRADING CO., LTD.
4-6-10, Shinkawa
181-0004 Mitaka-shi Tokyo
Japan
email: yanqun.xue@ni.aist.go.jp

Il-sung ZO
korea Meteorologica administra
61 Yeouidaebang-ro 16-gil Dongjak-gu seoul 156-
720
Asl/KR/KS013/seoul seoul
Korea
phone: +82-33-640-2397
email: zoilsung@gwnu.ac.kr
Ren Zhihua
CMA
Meteorological Observation Centre, China Meteorological Administration, No.46, Zhongguancun Nandajie, Haidian District, Beijing, China 100081 100081 Beijing
China
phone: 86-10-68406235
email: rzh@cma.gov.cn
Cor van Oort
KNMI
Utrechtseweg 297
3731 GA De Bilt
The Netherlands
phone: ++31 302206417
email: oortvan@knmi.nl

Chong Wei
 CMA

Meteorological Observation Centre, China Meteorological Administration, No.46, Zhongguancun Nandajie, Haidian District, Beijing, China 100081 100081 Beijing
China
phone: 86-10-68406936
email: chongwei@cma.gov.cn
Stefan Winter
PTB
Bundesallee 100
38116 Braunschweig
Deutschland
phone: +495315924140
email: stefan.winter@ptb.de

Yang Yun

CMA
Meteorological Observation Centre, China Meteorological Administration, No.46, Zhongguancun Nandajie, Haidian District, Beijing, China 100081 100081 Beijing
China
phone: 86-10-68408949
email: yyaoc@cma.gov.cn
Willem Zaaiman
European Commission - DG-JRC
Via Fermi, 2749
I-21028 Ispra Varese
Italy
phone: + 390332785750
email: willem.zaaiman@jrc.ec.europa.eu

Anro le Roux

GeoSUN Africa
Unit 1, CS Africa Building, 1 Meson Street, Techno Park
7600 Stellenbosch Western Cape
South Africa
phone: +27 212500585
email: anro.leroux@geosun.co.za

Bart van der Meer
Hukseflux Thermal Sensors
Delftechpark 31
2628XJ Delft The Netherlands
The Netherlands
email: bart@hukseflux.com

Appendices

Appendix A Corrigendum

A. 1 Tables

Table A.1: IPC-XII Participation: Various Institutions and Manufacturers (correction of Table 1.2)

Country	Institution	Participant(s)	Instrument(s)
Japan	AIST, Tsukuba	Yanqun Xue	

Table A.2: The new WRR factors for the participating instruments (correction of Table 2.2)

Instrument	C_{1}	C_{2}	R_{n} Ω	WRR Factor	σ ppm	N	Country/ Owner
NIP-35356E6	7.70			$\mathbf{1 . 0 1 1 0 1 8}$	2691	234	CIEMAT Spain

A. 2 Addresses of Participants

Jose L. Balenzategui
CIEMAT
Avda. Complutense, 40
28040 Madrid
Spain
phone: +34 914962509
email: jl.balenzategui@ciemat.es

[^0]: ${ }^{1}$ Manually operated radiometers which were using the web interface for submitting the data started their calibration sequence and/or zero reading on the starting time of the series. Hence they acquired slightly fewer irradiance readings per series.
 ${ }^{2}$ This timing scheme applies to all WRC radiometers and radiometers that were connected to the WRC data acquisition system. Radiometers which were controlled by their own computer may have deviated partly from this scheme.
 ${ }^{3}$ The heater voltage was manually selected before each series to match the expected level of solar irradiance.

[^1]: ${ }^{4}$ Some operators assumed a vanishing zero signal. They did not perform zero readings.

[^2]: ${ }^{1}$ This threshold range ususally is ± 0.002 for cavity pyrheliometers. However, for most Ångströms, NIP's and some cavities a different range had to be chosen manually in order to make the most plausible selection of data points.

[^3]: ${ }^{2}$ This WRR factor results from a re-evaluation of the IPC-XI data after excluding all measurements from October $3^{r d}$ and $7^{t h}$, 2010, because a wrong calibration factor was used on those days. The IPC-XI report erroneously included the affected data and states a WRR factor of 0.996933 .

