Broadband Outdoor Radiometer Calibration Longwave

BORCAL-LW 2017-05

<u>Customer</u> Bryan Fabbri

Organization: SSAI Address: One Enterprise Parkway, Suite 200, Hampton, VA 23666 USA Phone: 757-951-1639

> Calibration Facility Solar Radiation Research Laboratory

> > Latitude: 39.742°N Longitude: 105.180°W Elevation: 1828.8 meters AMSL Time Zone: -7.0

Calibration date 08/15/2017 to 10/06/2017

Report Date October 6, 2017

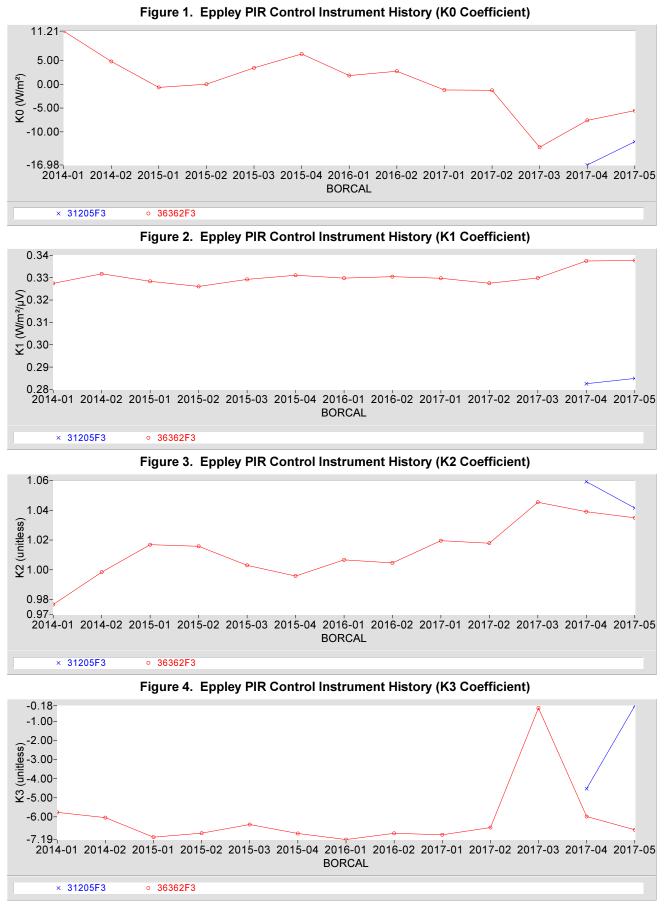
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	3
Control Instrument history plots	4
Results summary	
Appendix 1 Instrument Details	
Appendix 2 BORCAL Notes	


Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the World Infrared Standard Group (WISG).

This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates and application notes for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

Control Instrument History

Results Summary

Table 1. Results Summary							
	K0	K1	K2	K 3	Kr *	U95	
Instrument	(W/m²)	(W/m²/µV)			(K/µV)	(W/m²)	F
040740 Kipp & Zonen CG4	-10.8	0.12537	1.0369	0.00	7.044e-4	±3.0	
26169F3 Eppley PIR	-14.1	0.22895	1.0470	-3.91	7.044e-4	±2.9	
33974F3 Eppley PIR	-11.9	0.28100	1.0430	-5.84	7.044e-4	±3.0	

Table 1. Results Summary

Note: Environmental Conditions for BORCAL starts on page A1-11.

* Kr used to derive K0,K1,K2, and K3

Page A1-2 A1-5

A1-8

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions)

Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrgeometer	Manufacturer:	Kipp & Zonen
Model:	CG4	Serial Number:	040740
Calibration Date:	10/6/2017	Due Date:	10/6/2018
Customer:	Bryan Fabbri	Environmental Conditions:	see page 4
Test Dates:	8/15-31, 9/1-30, 10/1-6		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	04/12/2017	04/12/2019
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	04/12/2017	04/12/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31233F3	03/14/2017	03/14/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-LW-P00-Calibration and QA Procedure; available upon request.

- **Setup:** Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.
- Calibrated by: Afshin Andreas

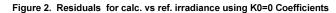
Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 040740 Kipp & Zonen CG4

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:


 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

$$\begin{split} Wr &= \sigma * Tr^{A} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma &= 5.6704\text{e-8 W}\text{·m-2}\text{·K-4,} \\ Tr &= Tc + Kr * V = \text{receiver temperature (K),} \\ Tc &= \text{case temperature (K),} \\ Kr &= \text{efficiency coefficient (K/\muV).} \end{split}$$

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

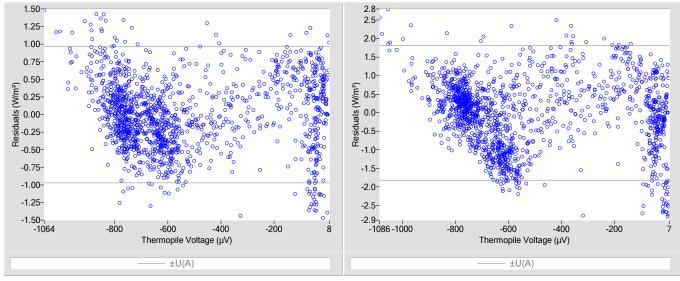


Table 2. Calibration Coefficients for K0<>0

KO	-10.8
К1	0.12537
К2	1.0369
КЗ	0.00
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

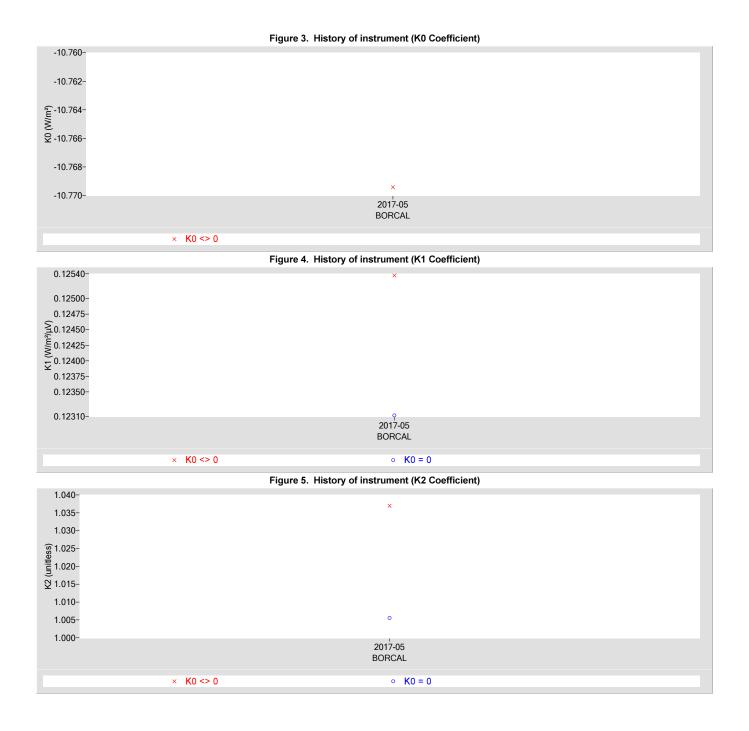

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.49
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.0

Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.12312
К2	1.0055
КЗ	0.00
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.93
Combined Standard Uncertainty, u(c) (W/m ²)	±1.7
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.4

References:

 [1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer	Manufacturer:	Eppley
Model:	PIR	Serial Number:	26169F3
Calibration Date:	10/6/2017	Due Date:	10/6/2018
Customer:	Bryan Fabbri	Environmental Conditions:	see page 4
Test Dates:	8/15-31, 9/1-30, 10/1-6		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	04/12/2017	04/12/2019
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	04/12/2017	04/12/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31233F3	03/14/2017	03/14/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-LW-P00-Calibration and QA Procedure; available upon request.

- Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.
- Calibrated by: Afshin Andreas

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 26169F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{l} \textit{Wr} = \sigma * \textit{Tr}^{A}\textit{4} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma = 5.6704e\text{-}8 \ \text{W}\cdot\text{m-}2\cdot\text{K-}4, \\ \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ \textit{Tc} = \text{case temperature (K),} \\ \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{array}$

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

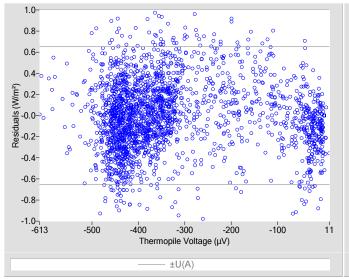


Table 2. Calibration Coefficients for K0<>0

KO	-14.1
К1	0.22895
К2	1.0470
КЗ	-3.91
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

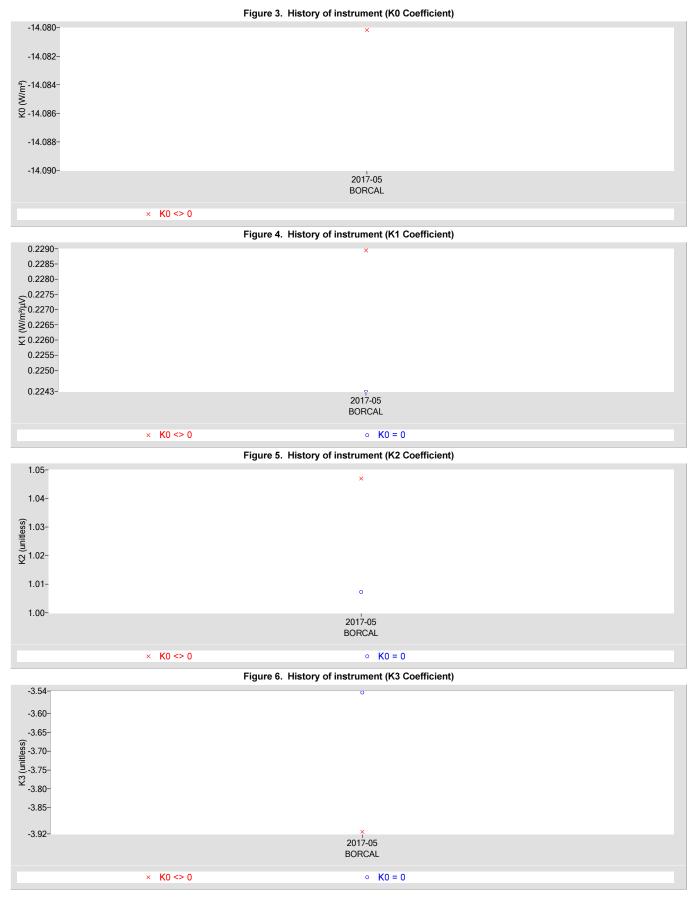


Table 3. Calibration Coefficients for K0=0

КО	0.0
К1	0.22430
К2	1.0073
КЗ	-3.54
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.92
Combined Standard Uncertainty, u(c) (W/m ²)	±1.7
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.4

References:

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer	Manufacturer:	Eppley
Model:	PIR	Serial Number:	33974F3
Calibration Date:	10/6/2017	Due Date:	10/6/2018
Customer:	Bryan Fabbri	Environmental Conditions:	see page 4
Test Dates:	8/15-31, 9/1-30, 10/1-6		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	04/12/2017	04/12/2019
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	04/12/2017	04/12/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31233F3	03/14/2017	03/14/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-LW-P00-Calibration and QA Procedure; available upon request.

- Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.
- Calibrated by: Afshin Andreas

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 33974F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{\Lambda}\textit{4} = \text{receiver irradiance (W/m^2),} \\ & \text{where,} \quad \sigma = 5.6704e\text{-}8 \text{ W}\cdot\text{m-}2\cdot\text{K-}4, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

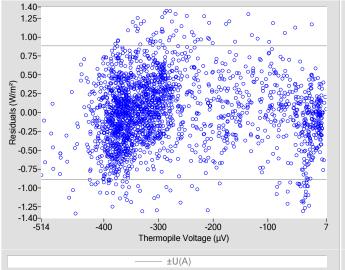
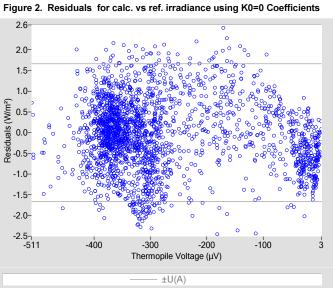



Table 2. Calibration Coefficients for K0<>0

ко	-11.9
К1	0.28100
К2	1.0430
КЗ	-5.84
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.45
Combined Standard Uncertainty, $u(c)$ (W/m ²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.0

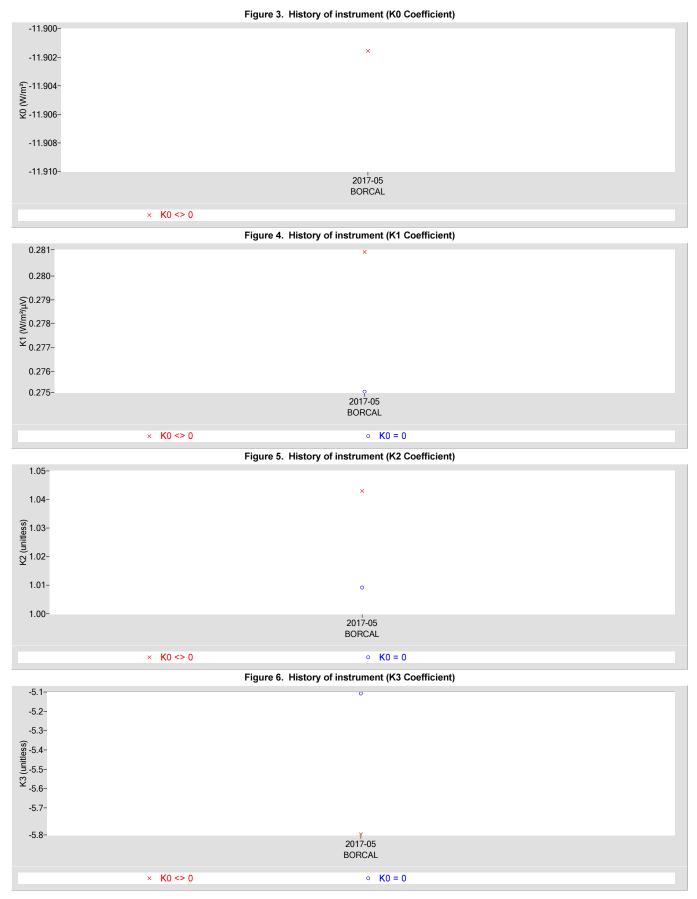


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.27514
К2	1.0092
КЗ	-5.11
Kr used to derive coefficients	7.044e-4

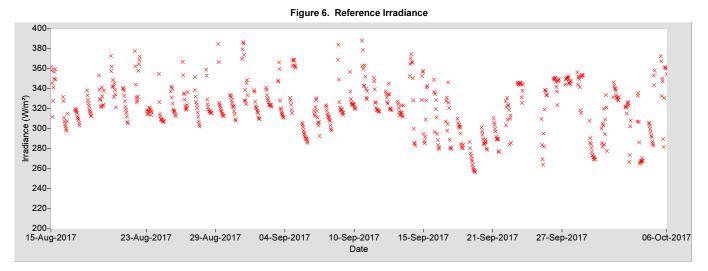
Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.85
Combined Standard Uncertainty, u(c) (W/m ²)	±1.7
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.3

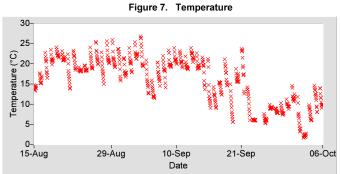
References:

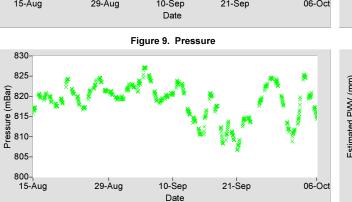
[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

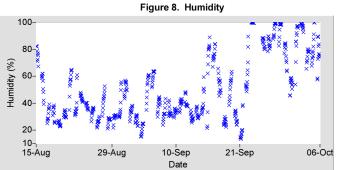
Environmental and Sky Conditions for BORCAL-LW 2017-05

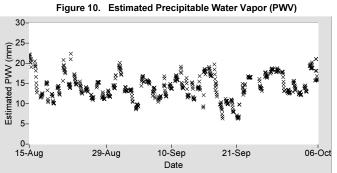

Calibration Facility: Solar Radiation Research Laboratory

Latitude: 39.742°N Longitude: 105.180°W


Elevation: 1828.8 meters AMSL


Time Zone: -7.0


Reference Irradiance (hourly averages):



Meteorological Observations (hourly averages):

Table 6. Meteorological Observations

Observations	Mean	Min	Max
Temperature (°C)	15.75	1.45	27.03
Humidity (%)	51.53	12.90	99.99
Pressure (mBar)	818.7	806.5	827.3
Est. Precipitable Water Vapor (mm)	14.3	6.0	23.0

For other information about the calibration facility visit: <u>http://www.nrel.gov/esif/solar-radiation-research-laboratory.html</u>

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL Notes

Facility: Solar Radiation Research Laboratory Comments: Avg. Station Pressure & Temperature is for Denver, CO, which is used for the Solar Position Algorithm (SPA).