Calibration Report: Multifilter Rotating Shadowband Radiometer, MFR-7, s/n 378

1 March 1999

Kevin Larman & Fred Denn Analytical Services and Materials, Inc. Hampton, Virginia

SUMMARY

Calibration date: 1 March 1999. Next calibration due: 1 March 2001

An analysis of clear sky data from a multifilter shadowband radiometer has been completed. A Harrison Objective Algorithm-Langley Analysis was applied to the data sets. The regressed values are total optical thickness, t, top-of-atmosphere voltage (corrected for Earth-sun distance), AUVo, and the regression deviation for each of the 5 sensor channels. Each of these values is a mean of the sum of the 5 days yielding Harrison Objective Algorithm-Langley Regression outputs. These data were collected at Mauna Loa Observatory, Hawai'i between 4 and 11 February 1999.

Serial Number: MFR-7 378

Channel, nm	Vo	AUVo	t	dev	n	U95
416	11251.61	10948.60	0.21239	0.01447	6	0.020
497	6883.32	6698.03	0.11801	0.00426	6	0.006
613	6233.27	6065.47	0.07914	0.00304	6	0.004
672	11289.90	10986.00	0.04996	0.00280	6	0.004
868	10137.00	9864.15	0.02185	0.00329	6	0.005

Application:

 $\boldsymbol{t}_{T} = -\left[\frac{\ln(V) - \ln(AUVo)}{m}\right] + -1095$

Where:

 $t_{T}^{V=\text{ Sensor output, voltage counts.}}$

m = air mass.

Vo = Intercept from regression

t = Slope from regression.

 $AUVo = Vo(Earth-sun distance, DU)^2$, solar constant estimate.

dev = The standard deviation of the residual variance from the data to the regression line of the ln(voltage output).

n = The number of morning or afternoon Langley Regressions. $U95 = sqrt(2 \text{ dev}^2)$