Calibration Report: Multifilter Rotating Shadowband Radiometer, MFR-7, s/n 378

1 March 1999

Kevin Larman \& Fred Denn
Analytical Services and Materials, Inc.
Hampton, Virginia
SUMMARY
Calibration date: 1 March 1999. Next calibration due: 1 March 2001

An analysis of clear sky data from a multifilter shadowband radiometer has been completed. A Harrison Objective Algorithm-Langley Analysis was applied to the data sets. The regressed values are total optical thickness, τ, top-of-atmosphere voltage (corrected for Earth-sun distance), AUVo, and the regression deviation for each of the 5 sensor channels. Each of these values is a mean of the sum of the 5 days yielding Harrison Objective Algorithm-Langley Regression outputs. These data were collected at Mauna Loa Observatory, Hawai'i between 4 and 11 February 1999.

Serial Number: MFR-7 378

Channel, nm	Vo	AUVo	τ	dev	n	U95
416	11251.61	10948.60	0.21239	0.01447	6	0.020
497	6883.32	6698.03	0.11801	0.00426	6	0.006
613	6233.27	6065.47	0.07914	0.00304	6	0.004
672	11289.90	10986.00	0.04996	0.00280	6	0.004
868	10137.00	9864.15	0.02185	0.00329	6	0.005

Application:

$$
\tau_{T}=-\left[\frac{\ln (V)-\ln (A U V o)}{m}\right] \quad+/-\mathrm{U} 95
$$

Where: $\quad \tau^{V}=$ Sensor output, voltage counts.
$\tau_{T}=$ Total optical thickness, calibrated.
$\mathrm{m}=$ air mass.
Vo $=$ Intercept from regression
$\tau=$ Slope from regression.
$A U V o=\operatorname{Vo}(\text { Earth-sun distance, } \mathrm{DU})^{2}$, solar constant estimate.
$\mathrm{dev}=$ The standard deviation of the residual variance from the data to the regression line of the \ln (voltage output).
$\mathrm{n}=$ The number of morning or afternoon Langley Regressions.
$\mathrm{U} 95=\operatorname{sqrt}\left(2 \operatorname{dev}^{2}\right)$

