Calibration Report: Pyranometer

F. M. Denn Analytical Services & Materials, Inc., Hampton, Virginia Document date 2006 July

Calibration date: 2006 June. Next calibration: 2007 December.

Four radiometers were calibrated at the Chesapeake Ocean Validation (COVE) site. The results of these Calibrations are included in this box. Earlier calibrations appear below in the CALIBRATION HISTORIES section. The calibration reference standard used, for the most recent data, was the Eppley Laboratories Inc. cavity radiometer AHF-31105. The unit of the sensitivity factors, S, are $\mu V/(W/m^2)$. The sensitivity factors and their associated uncertainties (95%) are as follows:

Sensor	$S (\mu V/(W/m^2)) \pm U95\%$	Method
CM22-000025	$9.22 \pm 1.6\%$	relative
CM31-990004	$12.15 \pm 1.5\%$	relative
CM31-990005	$11.89 \pm 1.1\%$	shade/unshade
CM31-000507	$11.70 \pm 0.54\%$	shade/unshade

Application

$$I = (\mu V \text{ output})/S \pm \text{sqrt}(2)*U95\%$$

Where: I = the irradiance measured by the pyranometer $(\mu V \text{ output}) = \text{microvolt}$ output of the pyranometer S = calibration coefficient of the pyranometer U95% = the 95% confidence level

Recommendation

It is Not necessary to change calibration values in the COVE data base at this time.

INTRODUCTION

The following sections contain, a brief executive summary, a set of figures, a summary of past calibrations, and a description of the calibration process.

EXECUTIVE SUMMARY

REFERENCE STANDARD.

The reference pyrheliometer was the Eppley Laboratories Inc. Absolute Cavity Radiometer (ACR) serial number AHF-31105 with its associated Agilent 34970A control unit.

TEST INSTRUMENTATION.

The four test pyranometers were CM31-990005 and CM22-000025, calibrated using the shade/unshade method and CM31-990004 and CM22-000025 calibrated with a relative comparison method. All pyranometers were wired for differential measurements.

FIGURES.

Figure one displays the cavity measured irradiance for May 10, and separately shaded and unshaded data for a text pyranometer. Figures 2a and 2b show the calibration values obtained for two test pyranometers calibrated using the shade/unshade method, the calibration values are grouped by cavity run number. Figures 3a and 3b show the calibration values obtained for two test pyranometers calibrated using the relative method. Figures 4, 5, 6, and 7 display the calibration historys Kipp and Zonen pyranometers serial numbers CM22-000025, CM31-990004, CM31-990005, and CM31-000507 respectively.

and Cavity/100 /data0/COVE_cal_20060510/dnw/sw/dnw/sw_20060510_cm31-990005.sec_dat_diffuse_filled /data0/COVE_cal_20060510/dnw/sw/dnw/sw_20060510_cm31-990005.sec_dat_global /data0/COVE_cal_20060510/dnw/sw/dnw/sw_20060510_dat // data0/COVE_cal_20060510/dnw/sw/dnw/sw_20060510_dat // data0/COVE_cal_20060510/dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw_20060510_dnw/sw/dnw/sw/20060510_dnw/sw/dnw/sw/20060510_dnw/sw/dnw/sw/20060510_dnw/sw/dnw/s

Global and filled diffuse from shade/unshade

Figure 1. Calibration measurements for pyranometer CM31-990005 are presented. Cavity, global pyranometer, and diffuse pyranometer measurements are presented separately. The diffuse measurements have been interpolated over their missing data periods. The data for CM31-000507 would be similar.

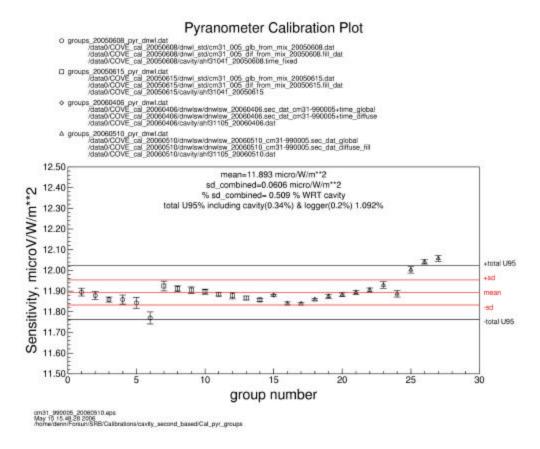


Figure 2a. Grouped shade/uns hade calibration data are shown for pyranometer CM31-990005. The mean and standard deviation of the grouped data are also shown. Data date May 10, 2006.

Pyranometer Calibration Plot

O groups_20060510_pyr_proj.dat .dats0:COVE_cal_20000510[project.project_20060610_cm31-000507.sec_dat_global .dats0:COVE_cal_20060510[project.project_20060510_cm31-000507.sec_dat_global .dats0:COVE_cal_20060610[cavty/sh/61105_20060610.dat

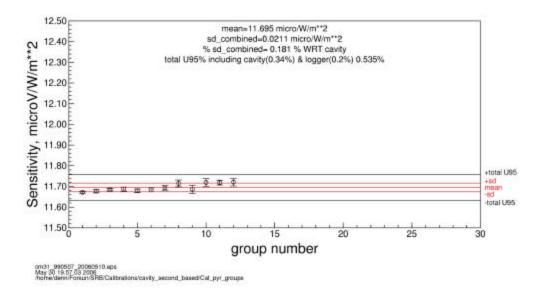


Figure 2b. Grouped shade/unshade calibration data are shown for pyranometer CM31-000507. The mean and standard deviation of the grouped data are also shown. Data date May 10, 2006.

Pyranometer Calibration Plot

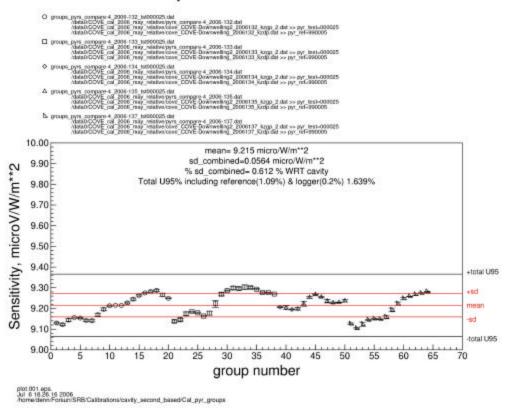


Figure 3a. Grouped relative calibration data are shown for pyranometer CM22-000025. The mean, standard deviation, and U95 are also displayed. Data dates May 12-15 and 17 of 2006.

Pyranometer Calibration Plot

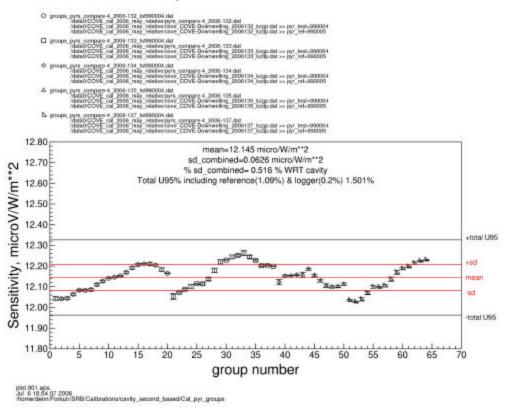


Figure 3b. Grouped relative calibration data are shown for pyranometer CM31-990004. The mean, standard deviation, and U95 are also displayed. Data dates May 12-15 and 17 of 2006.

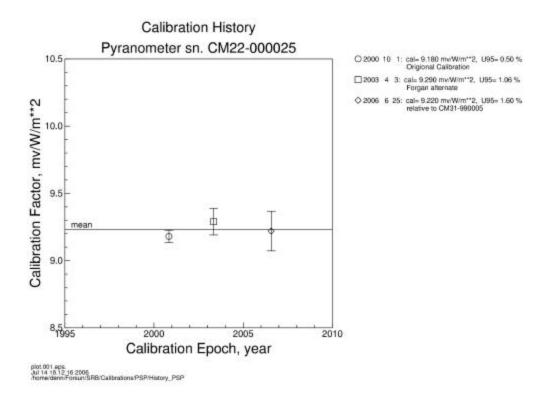


Figure 4. Calibration history for pyranometer CM22-000025 is presented. The solid horizontal line represents the mean value. The symbols and their error bars represent the mean and U95 of each calibration event. The column on the right presents numerical values for each calibration event and a brief description of the calibration method used.

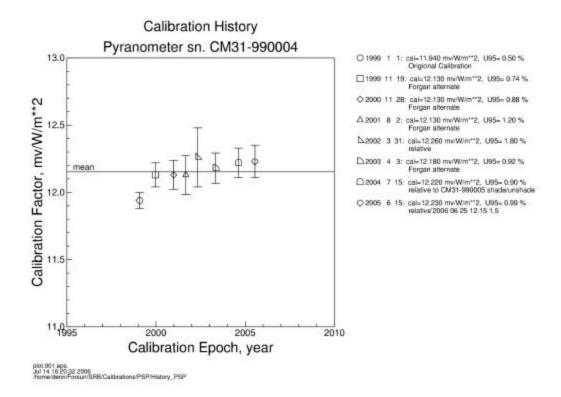


Figure 5. Calibration history for pyranometer CM31-990004 is presented. The solid horizontal line represents the mean value. The symbols and their error bars represent the mean and U95 of each calibration event. The column on the right presents numerical values for each calibration event and a brief description of the calibration method used.

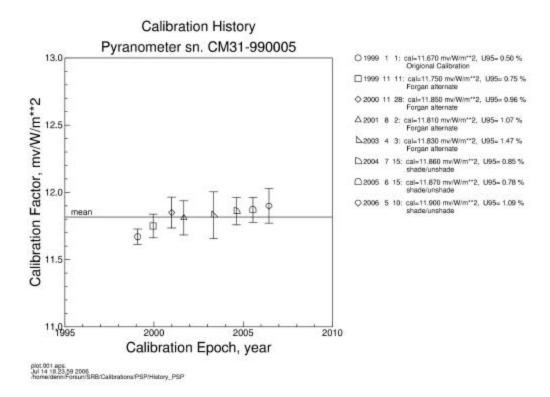


Figure 6. Calibration history for pyranometer CM31-990005 is presented. The solid horizontal line represents the mean value. The symbols and their error bars represent the mean and U95 of each calibration event. The column on the right presents numerical values for each calibration event and a brief description of the calibration method used.

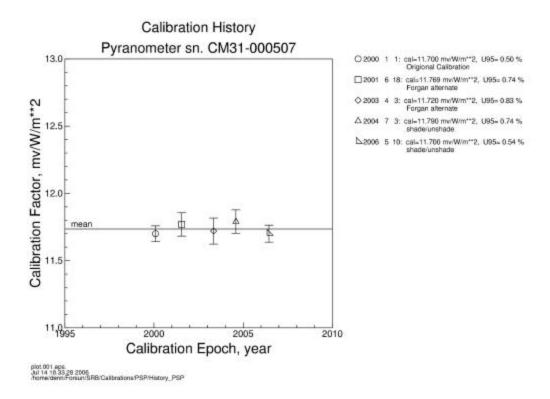


Figure 7. Calibration history for pyranometer CM31-000507 is presented. The solid horizontal line represents the mean value. The symbols and their error bars represent the mean and U95 of each calibration event. The column on the right presents numerical values for each calibration event and a brief description of the calibration method used.

CALIBRATION HISTORIES

(doy = day of year)

Pyranometer: Kipp and Zonen CM22-000024					
date	doy	$S(\mu V/W/m^2)$	U95 (%)	calibration type	
2003 Apr 03	093	9.19	1.16	Forgan's alternate	
2001 Jun 18	169	9.214	1.013	Forgan's alternate	
2000 Oct 01	275	9.16	5.00	manufacturers original	
Pyranometer: 1	Kipp an	nd Zonen CM22-000025	5		
date	doy	$S(\mu V/W/m^2)$	U95 (%)	calibration type	
2006 May 17	137	9.22	1.6	relative	
2003 Apr 03	093	9.29	1.06	Forgan's alternate	
2000 Oct 01	275	9.18	5.00	manufacturers original	
				-	
-		d Zonen CM22-000030			
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
2001 Jun 18	169	8.40	1.316	Forgan's alternate	
2000 Jan 01	001	8.40	5.00	manufacturers original	
Pyranometer: Kipp and Zonen CM31-990004					
date	doy	$S(\mu V/W/m^2)$	U95 (%)	calibration type	
2006 May 17	137	12.15	1.5	relative	
2005 June 15	165	12.23	0.99	relative	
2004 Jul 15	197	12.22	0.90	relative	
2003 Apr 03	093	12.18	0.92	Forgan's alternate	
2002 Mar 31	90	12.26	1.8	Intercomparison (do not use)	
2001 Aug 02	214	12.130	1.2	Forgan's alternate	
2000 Nov 28	333	12.132	0.88	Forgan's alternate	
1999 Nov 11	315	12.133	0.74	Forgan's alternate	
1999 Jan 01	001	11.94	5.00	manufacturers original	

Pyranometer: Kipp and Zonen CM31-990005					
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
2006 May 10	130	11.90	1.1	shade/unshade	
2005 June 15	165	11.87	0.78	shade/unshade	
2004 Jul 15	197	11.86	0.85	shade/unshade	
2003 Apr 03	093	11.83	1.5	Forgan's alternate	
2001 Aug 02	214	11.813	1.1	Forgan's alternate	
2000 Nov 28	333	11.852	0.96	Forgan's alternate	
1999 Nov 11	315	11.748	0.75	Forgan's alternate	
1999 Jan 01	001	11.67	5.00	manufacturers original	
		d Zonen CM31-000506			
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
2003 Apr 03	093	11.67	1.64	Forgan's alternate	
2000 Sep 01	245	11.68	5.00	manufacturers original	
D					
Pyranometer:	Kinn and	d Zonen CM31-000507	,		
=		d Zonen CM31-000507		calibration type	
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
date 2006 May 10	doy 130	$S (\mu V/W/m^2)$ 11.70	U95 (%) 0.54	shade/unshade	
date 2006 May 10 2004 Jul 03	doy 130 197	S (μV/W/m ²) 11.70 11.79	U95 (%) 0.54 0.74	shade/unshade shade/unshade	
date 2006 May 10 2004 Jul 03 2003 Apr 03	doy 130 197 093	S (μV/W/m ²) 11.70 11.79 11.72	U95 (%) 0.54 0.74 0.83	shade/unshade shade/unshade Forgan's alternate	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18	doy 130 197 093 169	S (μV/W/m²) 11.70 11.79 11.72 11.769	U95 (%) 0.54 0.74 0.83 0.74	shade/unshade shade/unshade Forgan's alternate Forgan's alternate	
date 2006 May 10 2004 Jul 03 2003 Apr 03	doy 130 197 093	S (μV/W/m ²) 11.70 11.79 11.72	U95 (%) 0.54 0.74 0.83	shade/unshade shade/unshade Forgan's alternate	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18	doy 130 197 093 169	S (μV/W/m²) 11.70 11.79 11.72 11.769	U95 (%) 0.54 0.74 0.83 0.74	shade/unshade shade/unshade Forgan's alternate Forgan's alternate	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01	doy 130 197 093 169 001	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70	U95 (%) 0.54 0.74 0.83 0.74 5.00	shade/unshade shade/unshade Forgan's alternate Forgan's alternate	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01	doy 130 197 093 169 001	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70 d Zonen CM31-000508	U95 (%) 0.54 0.74 0.83 0.74 5.00	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01	doy 130 197 093 169 001 Kipp and	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70	U95 (%) 0.54 0.74 0.83 0.74 5.00	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original calibration type	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01 Pyranometer: Idate 2004 Jul 03	doy 130 197 093 169 001	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70 d Zonen CM31-000508 S (μV/W/m²) 11.86	U95 (%) 0.54 0.74 0.83 0.74 5.00	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original calibration type relative	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01 Pyranometer: I date 2004 Jul 03 2003 Apr 03	doy 130 197 093 169 001 Kipp and doy 197 093	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70 d Zonen CM31-000508 S (μV/W/m²) 11.86 11.78	U95 (%) 0.54 0.74 0.83 0.74 5.00 U95 (%) 0.91 1.9	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original calibration type relative Forgan's alternate	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01 Pyranometer: 1 date 2004 Jul 03 2003 Apr 03 2003 Apr 03	doy 130 197 093 169 001 Kipp and doy 197 093 90	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70 d Zonen CM31-000508 S (μV/W/m²) 11.86 11.78 12.08	U95 (%) 0.54 0.74 0.83 0.74 5.00 U95 (%) 0.91 1.9 1.63	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original calibration type relative Forgan's alternate intercomparison (do not use)	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01 Pyranometer: I date 2004 Jul 03 2003 Apr 03 2002 Mar 31 2001 Aug 02	doy 130 197 093 169 001 Kipp and doy 197 093 90 214	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70 d Zonen CM31-000508 S (μV/W/m²) 11.86 11.78 12.08 11.59	U95 (%) 0.54 0.74 0.83 0.74 5.00 U95 (%) 0.91 1.9 1.63 1.63	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original calibration type relative Forgan's alternate intercomparison (do not use) intercomparison¹ (do not use)	
date 2006 May 10 2004 Jul 03 2003 Apr 03 2001 Jun 18 2000 Jan 01 Pyranometer: 1 date 2004 Jul 03 2003 Apr 03 2003 Apr 03	doy 130 197 093 169 001 Kipp and doy 197 093 90	S (μV/W/m²) 11.70 11.79 11.72 11.769 11.70 d Zonen CM31-000508 S (μV/W/m²) 11.86 11.78 12.08	U95 (%) 0.54 0.74 0.83 0.74 5.00 U95 (%) 0.91 1.9 1.63	shade/unshade shade/unshade Forgan's alternate Forgan's alternate manufacturers original calibration type relative Forgan's alternate intercomparison (do not use)	

Pyranometer: I						
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type		
2003 Apr 03	093	8.53	1.80	Forgan's alternate		
2002 Mar 31	090	8.52	2.95	intercomparison (do not use)		
2001 Jun 18	169	8.57	2.63	Forgan's alternate		
1999 Feb 12		8.49	4.51	Forgan's alternate		
1998 Jun 03	154	8.68	1.22	Forgan's alternate		
1993 Apr 16	106	8.76	5.00	manufacturers original		
Pyranometer: I	Ennley l	PSP_30676F3				
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type		
1999 Feb 12	•	8.49	2.98	Forgan's alternate		
1998 Jun 03		8.66	1.06	Forgan's alternate		
1995 Jun 16	167	8.74	5.00	manufacturers original		
1775 3411 10	107	0.71	2.00	manaractarers original		
Pyranometer: I	Eppley 1	PSP-30798F3				
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type		
1999 Feb 12	043	8.45	5.23	Forgan's alternate		
1998 Jun 03	154	8.82	1.28	Forgan's alternate		
1995 Aug 07	219	9.01	5.00	manufacturers original		
Pyranometer: I	Eppley 1	PSP-30803F3				
date	doy	$S(\mu V/W/m^2)$	U95 (%)	calibration type		
1999 Feb 12	043	9.26	4.35	Forgan's alternate		
1998 Jun 03	154	9.55	1.17	Forgan's alternate		
1996 Jul 23	205	9.362	3.2	BORCAL		
1995 Aug 07	219	9.46	5.00	manufacturers original		
Pyranometer: Eppley PSP-30806F3						
date	doy	$S(\mu V/W/m^2)$	U95 (%)	calibration type		
2003 Apr 03	093	8.70	2.92	Forgan's alternate		
2002 Mar 31	090	8.76	1.81	Intercomparison (do not use)		
2001 Jun 18	169	8.95	1.22	Forgan's alternate		
1999 Feb 12	043	8.72	5.47	Forgan's alternate		
1998 Jun 03	154	9.07	0.90	Forgan's alternate		
1995 Aug 07	219	9.22	5.00	manufacturers original		

Pyranometer: Eppley PSP-30847F3					
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
1999 Sep 24	267	8.37	3.24	Forgan's alternate	
1999 Feb 12	043	8.75	3.14	Forgan's alternate	
1998 Jun 03	154	8.80	1.19	Forgan's alternate	
1995 Aug 07	219	8.96	5.00	manufacturers original	
Pyranometer: E	Eppley P	PSP-30851F3			
Date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
1999 Feb 12	043	8.37	1.61	Forgan's alternate	
1998 Jun 03	154	8.48	0.93	Forgan's alternate	
1996 Jul 23	205	8.257	3.3	BORCAL	
1995 Aug 07	219	9.68	5.00	manufacturers original	
C				C	
Pyranometer: E	Eppley P	PSP-31560F3			
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
1999 Sep 24	267	8.85	9.07	Forgan's alternate (poor)	
1999 Feb 12	043	9.23	4.20	Forgan's alternate	
1998 Jun 03	154	9.53	0.98	Forgan's alternate	
1997 May 05	125	9.51	5.00	manufacturers original	
Pyranometer: I	Eppley F	PSP-31561F3			
date	doy	$S (\mu V/W/m^2)$	U95 (%)	calibration type	
1999 Feb 12	043	8.42	1.84	Forgan's alternate	
1997 May 05	125	8.52	5.00	manufacturers original	
Pyranometer: Eppley PSP-33028F3					
date	doy	$S(\mu V/W/m^2)$	U95 (%)	calibration type	
2003 Apr 03	093	8.53	1.01	Forgan's alternate	
2000 Jul 01	183	8.65	5.00	manufacturers original	

¹⁾ The Pyranometer was mounted as a global sensor. An intercomparison with the COVE derived global irradiance was performed. The uncertainty was determined using the root sum square method and previously determined uncertainties for the 3 sensors, COVE direct, COVE diffuse, and the sensor being analyzed (CM31-000508).

ABSTRACT

Data have been collected for the purpose of calibrating pyranometers. The current data sets were collected at the CERES Ocean Validation Experiment (COVE) site. COVE is located at the Chesapeake Light Station approximately 25 km east of Virginia Beach, Virginia. Pyranometers included are those which measure global and diffuse downwelling shortwave In the past, calibration data have been collected at COVE, NASA Langley in Hampton Virginia, and Mauna Loa Observatory Hawaii. These historical data are used to create a time history of calibration coefficients. The radiometric reference used for the current calibration measurements was the Eppley Laboratory Inc. absolute cavity radiometer serial number AHF-31105. During past calibration events the absolute cavity AHF-31041 has also been used. For more information about the cavity radiometers see the Absolute Cavity Radiometer calibration entries on the COVE web site. An uncertainty analysis is preformed and included with the pyranometer calibrations. During this calibration session data were collected for the pyranometers listed in the box at the beginning of the document. These calibration values are traceable to the World Radiometric Reference (WRR), at the Physikalisch-Meteorologisches Observatorium in Davos, Switzerland.

DISCUSSION

REFERENCE STANDARD.

The reference pyrheliometer was the Eppley Laboratories Inc. Absolute Cavity Radiometer (ACR) serial number AHF-31105 with its associated Agilent 34970A control unit. The NASA Langley owned Eppley Laboratories Inc Absolute cavity radiometers AHF-31041 and AHF-31105 can be traced to the World Radiation Reference (WRR). Direct linkage was obtained at the ninth and tenth International Pyrheliometer Comparisons (IPC-IX and IPC-X) in October of 2000 and 2005 respectively. Other years starting in 1997 they were linked to the WRR through the National Standard Group (NSG) at the National Renewable Energy Laboratories in Golden, Colorado. The NSG is also linked to the WRR at the IPCs. The WRR is an average of the World Standard Group (WSG) of pyrheliometers which is kept at the Physikalisch-Meteorologisches Observatorium in Davos, Switzerland. The uncertainty of the WSG is 0.3% (U95% with respect to SI units). After each cavity intercomparison is completed, new WRR correction values and their U95 uncertainties, with respect to SI, are determined for each participant cavity. The raw irradiances as measured by a given ACR are multiplied by its WRR correction value to get the final ACR determined direct beam irradiance values. See the cavity calibration documents for greater detail.

The Agilent 34970As, used as cavity controllers, contain the following 3 optional boards: 34901A 20 channel multiplexer; 34904A matrix switch; and a 34907A multi function module. It is operated with a Windows computer using a LabView based program supplied by Ibrahim Reda of The National Renewable Energy Laboratory (NREL) located in Golden Colorado.

SHADE/UNSHADE METHOD, CONFIGURATION AND METHODOLOGY.

The pyranometers, calibrated using the shade/unshade, are those ordinarily used to measure diffuse irradiance. All pyranometers remain in their original positions. The only exception would be if the normally downlooking pyranometer is to be calibrated. In that case it would be moved to an uplooking global position. The nut on the lowest link of the shading ball system is removed. This allows the normally diffuse pyranometers to be operated alternately in the diffuse and global mode. The ACR is mounted on a tracker and aligned with the sun. Pyranometer measurements, in millivolts are recorded by Campbell Scientific Inc. model 23x data loggers. The data logger programs are modified to store 1 HZ data. All pyranometers are leveled using the manufacturer installed bubble level (+/- 1°). The desiccant in each sensor was checked and replaced as necessary.

During a calibration session the following process is repeated as long as sky conditions permit. The ACR self calibration process is performed, this takes about 3 minutes. The program is then instructed to take 200 measurements, one every 4 seconds, this is considered to be a run. (Before January 2006, a run consisted of 300 measurements taken at intervals of 3-4 seconds). During a run the pyranometers are operated alternately in the shaded (diffuse) configuration and then in the unshaded (global) configuration for periods of about 3 minutes each. This is accomplished by rotating the shading balls towards the tracker until they rest on the long arms attached to the zenith axes of the tracker. A run is about 20 minutes.

SHADE/UNSHADE METHOD, DATA ANALYSIS.

In the shade/unshade method, the data collected from a pyranometer during shaded and unshaded periods is separated into global and diffuse components. The missing periods of the diffuse component are filled in, in this case by linear interpolation. The difference in millivolts between the interpolated shaded values and the measured global values is determined for each global value. The pyranometer and ACR points are matched to the closest second. A WRR adjusted horizontal component of the direct beam irradiance, in watts/meter**2, is calculated for each ACR measurement. This is accomplished by multiplying the ACR measured irradiance by the cosine of the solar zenith angle at the time of the measurement. The calibration coefficient, for each second of matching data, is then determined by dividing the pyranometer millivolt reading by the appropriate ACR determined horizontal irradiance. The resulting data are edited to remove periods of unacceptable sky conditions. For a run to be considered valid 75% of the maximum number of points are required. A mean and standard deviation are determined for each run. These run values and standard deviations are then used to calculate a calibration event mean and standard deviation. Ideally a calibration event would consist of at least 3 non-identical clear sky days during which measurements are taken. This makes the calibration value more representative of an 'average' day. Due to poor site access this is generally not possible. The 3 or 4 most recent calibration measurement events during the past

year are used to obtain a final calibration value. For one pyranometer CM31-000507 only data obtained on 2006 May 10 was available. The calibration event mean is the mean of the run values. A standard deviation of these means is then calculated, as well as the mean of the individual standard deviations. These two standard deviations are converted into U95 values by multiplying them by 2.0 and used in the uncertainty analysis below. The Final result is then converted to microvolt/ $(W/m^{**}2)$.

SHADE/UNSHADE, UNCERTAINTY ANALYSIS.

The uncertainties presented here are the U95 values. A measured value with its U95 uncertainty has a 95% probability of including the 'true value'. The U95 uncertainty is twice the standard deviation. Four uncertainties are used there to determine a resultant uncertainty they are, 1) reference standard uncertainty, 2) mean of the uncertainty of the individual data points, 3) uncertainty of the mean of the data points and, 4) data logger uncertainty. The cavity uncertainty determined at the 2004 National Pyrheliometer Comparison at NREL was 0.34%. The final uncertainty is taken to be the root sum square of the components. The measured uncertainty is twice the root sum square of the standard deviations of the individual calibration values with the with the standard deviation of

$$U95_{total} = sqrt((U95_{reference})^2 + (U95_{mean})^2 + (U95_{SDs})^2 + (U95_{logger})^2)$$

Where:

U95_{total} is the total U95 for the test pyranometer.

U95_{reference} is the U95 of the reference with respect to the WRR

U95_{mean} is the U95 of the test pyranometers mean.

U95_{SDs} is the U95 of the mean of the standard deviations of the calibration points.

 $U95_{logger}$ is the expected U95 of the of the test pyranometer data logger (0.2%).

Relative Measurement Method.

RELATIVE METHOD, CONFIGURATION AND METHODOLOGY.

Due to a tracker malfunction clear sky global data is available from the normally diffuse pyranometer CM31-990005 for May 12-15 and 17 of 2006. This Global data is used to transfer the calibration from CM31-990005 to the global pyranometers CM22-000025 and CM31-990004. The millivolt outputs of the pyranometers were measured at 1 HZ and one minute means and standard deviations determined. This is the standard COVE data available from the COVE site data base web interface.

RELATIVE METHOD, DATA ANALYSIS.

In the relative comparison method, the global pyranometer measurements obtained by a normally diffuse pyranometer (reference pyranometer) are compared to the standard global pyranometers (test pyranometers) measurements. Clear sky data is selected from the available data. The data is then divided in to 20 minute intervals, beginning at the beginning of an hour. Each 20 minute interval is considered to be a run. This time period was chosen because it is similar in length to a cavity run. For each run 75% of the data must be present (15 measurements) or the group is rejected. For each data point within a group the irradiance determined by the reference pyranometer is determined. The calibration value of the test pyranometer is then determined by dividing the millivolt output of the test pyranometer by the irradiance of the reference pyranometer. For each group a mean and standard deviation are then determined. The mean of the group means and the standard deviation of the group means is then determined. This mean is taken as the calibration value. The final results are presented in terms of microvolts/(Watts/Meter**2).

Uncertainty Analysis, Relative Method.

The three principal components of uncertainty used in this analysis are; 1) the mean of the standard deviations of the individual groups; 2) the standard deviation of the individual group means and; 3) the U95 uncertainty of the reference pyranometer. The two standard deviations are placed in terms of U95 by multiplying them by 2.0. The total U95 is then determined by the root sum sq method.

$$U95_{\text{total}} = sqrt(\ (U95_{\text{reference}})^2 + (U95_{\text{mean}})^2 + (U95_{\text{sd}})^2\)$$

Where:

U95_{total} is the total U95 for the test pyranometer.

 $U95_{reference}$ is the U95 of the reference with respect to the WRR

U95_{mean} is the U95 of the group mean of the test pyranometer sensitivities.

 $U95_{sd}$ is the mean of the group U95 values.

Summary

Calibration of pyranometers has been completed. A set of calibration coefficients along with their associated U95 uncertainties have been determined. These values for each pyranometer are displayed at the beginning of this document. Historical calibration values are included for each pyranometer in the body of the document.

USEFULL REFERENCES

American National Standard for Expressing Uncertainty-U.S. Guide to the Expression of Uncertainty in Measurement, ANSI/NCSL Z540-2-1997. Reprinted February 1998.

McArthur, L.J.B., Baseline Surface Radiation Network (BSRN) Operations Manual V1.0, World Climate Research Programme, June 1997.

NREL, "Broadband Outdoor Radiometer Calibration Report", BORCAL 96-2, 23 July 1996.

Pacific Northwest Radiometer Workshop, National Renewable Energy Laboratory, University of Oregon Solar Monitoring Lab, Eugene, Oregon, Aug 6-8 1997.

Bruce W. Forgan, "A New Method for Calibrating Reference and Field Pyranometers", Journal of Atmospheric and Oceanic Technology, Volume 13, Pages 638-645.

Pyrheliometer calibration document, 2001 Aug 2, http://www-svg.larc.nasa.gov/cal/indes.html

International Pyrheliometer Comparison – 10 (IPC-X). IOM report No. 91. WMO/TD No. 1320. (Contact PMOD WRC for more information)