
27. Sep - 15. Oct 2010 Davos, Switzerland

WMO International Pyrheliometer Comparison IPC-XI
 27 September - 15 October 2010
 Davos, Switzerland

Final Report

Wolfgang Finsterle

Contents

1 Organization and Procedures 5
1.1 Introduction 5
1.2 Participation 5
1.3 Data Acquisition and Evaluation 10
1.3.1 Timing of the Measurements 11
1.3.2 Data Evaluation 12
1.3.3 Auxiliary Data 13
1.4 Approvement and Dissemination of the Results 13
2 Measurements and Results 15
2.1 Data Selection Criteria for the Final Evaluation 15
2.2 Computation of the New WRR Factors 15
2.2.1 WSG Instruments 15
2.2.2 Participating Instruments 16
2.3 Status of the WSG and Transfer of the WRR 16
2.4 External stability check of the WSG 20
2.5 Saharan Dust Event (SDE) 22
3 Conclusions and Recommendations 27
3.1 Graphical Representation of the Results 27
4 Auxiliary Data 71
4.1 Direct and Diffuse Irradiance 71
4.2 Meteorological Data 72
4.3 Airmass and Aerosol Optical Depth (AOD) 73
4.4 Scattering parameters 74
4.5 Scattering phase functions 75
5 Symposium 77
5.1 To Build and Share Knowledge 77
5.2 Artistic Representation 77
6 Supplementary Information 79
6.1 Addresses of Participants 79

Chapter 1 Organization and Procedures

1.1 Introduction

The $11^{\text {th }}$ International Pyrheliometer Comparison (IPC-XI) was held together with Regional Pyrheliometer Comparisons (RPCs) of all WMO Regional Associations (RA I to RA IV) from 27 September through 15 October 2010 at the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC) in Davos, Switzerland.

The results presented in this report are based on the measurements carried out during the three weeks assigned to the IPC-XI. The favorable weather conditions allowed to acquire a large number of calibration points for most participating instruments. Cloudy and overcast days were used for technical preparations and training of participants as well as for a the IPC-XI symposium and Course on Radiation Measurement. A Saharan Dust Event (SDE) affected the measurements during several days starting October $8^{\text {th }}$. Analyzing the effect of the SDE on different types of instruments led to interesting findings which are summarized in dedicated section of this report.

1.2 Participation

Representatives from 17 Regional and 22 National Radiation Centers as well as 14 manufacturers and other institutions took part in the comparison. Additionally, two institutions who did not send a representative had their pyrheliometers operated by other participants, resulting in 88 participants operating 95 pyrheliometers from 42 countries. The six World Standard Group (WSG) and 24 additional pyrheliometers, including the new Cryogenic Solar Absolute Radiometer (CSAR), were operated by the WRC staff. A representative of WMO was attending during the first couple of days of IPC-XI.

Table 1.1: IPC-XI Participation: World, Regional and National
Radiation Centers

Country	Type	Institution	Operator(s)	Instrument(s)
World Radiation Center				
Switzerland	WRC	Physikalisch-Meteorologisches	W. Finsterle	PMO2
		Observatorium Davos/ World	A. Fehlmann	PMO5
		Radiation Center, Davos	J. Gröbner	CROM2L
			W. Schmutz	PAC3
			M. Suter	HF18748
			C. Thomann	MK67814
			C. Wehrli	CIMEL
			R. Winkler (NPL)	0501657
				31144E6
				DARA A, B, C
				EPAC11402
				CH1 970147
				PMO6-0401
				PMO6-79-122
				PMO6-80022
				AHF32455
				CSAR
				PMO6-0101
				PMO6-0401
				PMO6-0801
				PMO6-0803
				PMO6-0810
				PMO6-0811
				PMO6-0812
				PMO6-0813
				PMO6-0814
				PMO6-0815
				PMO6-0816
				PMO8-P01
				SIAR-2A
				SIAR-2B
RA I				
Algeria	RRC	Office National de Météorologie, Tamanrasset	B. Ouchene	HF 29225
Kenya	NRC	Kenya Meteorological Dept., Nairobi	P. Sira	Å13444
Morocco	NRC	Meteo Maroc, Casablanca	M. Badrane	CH1 080004
Mozambique	NRC	National Inst. of Meteo, Maputo	A. M. Mandlate	Å26835
				$\begin{aligned} & \text { CH1 } 950086 \\ & 31822 \mathrm{E} 6 \end{aligned}$

Table 1.1: (continued)

Country	Type	Institution	Operator(s)	Instrument(s)
Nigeria	RRC	Nigerian Meteorol. Agency, Abuja	I. D. Nnodu K. S. Muyiolu	A 576
South Africa	NRC	CSIR, Pretoria, Gauteng	M. Lysko S. Mulaudzi	AHF 31117
Sudan	NRC	Sudan Meteorological Authority, Karthoum	Y. Odan	NIP 28330
RA II				
China	NRC	CMA, Beijing	Yang Yun Quan Jimei Luo Chang	PMO6-850406 AHF 36011
India	RRC	Central Radiation Laboratory, Pune, Maharashtra	R. J. Sharma	AHF 18742
Japan	RRC	JMA, Tokyo	O. Ijima	PMO6-0403 HF 32446
Philippines	NRC	Philippine Atmospheric, Geophys. and Astron. Services PAGASA, Diliman, Quezon City	V. Esquivel	Å12578
Thailand	NRC	Thai Meteorological Department, Bangkok	W. Subwat	HF 27796
RA III				
Argentina	RRC	Servicio Meteorologico Nacional, Buenos Aires	G. Carbajal Benitez	AHF 29225
Chile	RRC	Dirección Meteorológica Chile, Santiago	P. Mostraj	PMO6-850410
Colombia	NRC	IDEAM, Bogotá	F. J., Bernal Garcia	PMO6-79-123
Peru	RRC	SENAMHI, Lima	E. Villegas	Å18020
RA IV				
Canada	RRC	Environment Canada, Wilcox, Saskatchewan	O. Niebergall D. Halliwell I. Abboud	HF 18747 HF 20406 AHF 34320 AHF 34321
Mexico	RRC	Instituto de Geofísica, UNAM México	D. Riveros	HF 29223

Table 1.1: (continued)

Country	Type	Institution	Operator(s)	Instrument(s)
USA	RRC	NOAA/ESRL/GMD, Boulder	D. Nelson J. Michalsky J. Wendell G. Hodges	HF 28553 AHF 32448 AHF 30710 AHF 28553 TMI 67502
RA V				
Australia	RRC	Bureau of Meteorology, Melbourne	B. Forgan M. Milner	HF 27160 TMI 69137
RA VI				
Austria	NRC	ZAMG, Vienna	M. Mair	TMI 68025 CHP1 100245
Belgium	RRC	Royal Meteorological Institute, Uccle	A. Chevalier S. Dewitte S. Bali L. Gonzales P. Malcorps	CR09L CR09R
Croatia	NRC	Meteorological and Hydrological Service, Zagreb	K. Premec	CH1 940072 CHP1 100288
Czech Republic	NRC	Czech. Hydromet. Institute, Hradec Kralove	J. Pokorny	HF 30497
Estonia	NRC	Estonian MH Inst, Tallin	A. Kallis	PMO6-850405
France	RRC	Météo-France-Centre Radiométrique, Carpentras-Serres	J.-P. Morel	TMI 68016
Germany	RRC	DWD/MOL-RAO, Tauche -OT Lindenberg	K. Behrens	HF 27157 PMO6-5 PMO6-0405
Hungary	RRC	Hungarian Met. Service, Budapest	S. Varga-Fogarasi Z. Nagy	HF 19746
Israel	NRC	Israel Meteorological Service, Bet-Dagan	A. Baskis	HF 27162
Lithuania	NRC	Lithuanian HMS, Vilnius	D. Mikalajunas	PMO6-0804
Norway	NRC	Geophys. Inst, Bergen	J. A. Olseth	EPAC 13617
Poland	NRC	Institute of Meteorology and Water Management, Warsaw	B. Bogdañska	HF 30716
Romania	NRC	National Meteorological Administration, Bucharest	C. Oprea	Å702

Table 1.1: (continued)

Country	Type	Institution	Operator(s)	Instrument(s)
Russia	RRC WRDC	Voeikov MGO, St. Petersburg	A. Pavlov	A 212
Slovakia	NRC	Slovak Hydrometeorological Institute, Bratislava	M. Chmelik	Å13439
Spain	NRC	CIEMAT, Madrid	I. Rodriguez Outon	AHF 28486 PMO6-0301
Sweden	RRC	SMHI, Norrköping	T. Carlund J.-E. Karlsson	PMO6-811108 AWX 33393
The Netherlands	NRC	KNMI, De Bilt	W. Knap C. van Oort	$\begin{aligned} & \text { HF } 27159 \\ & \text { CH1 } 020283 \end{aligned}$
United Kingdom	NRC	Met Office, Exeter, Devon	P. Fishwick L. Green	TMI 67604 HF 31110

Table 1.2: IPC-XI Participation: Various Institutions and Manufacturers

Country	Institution	Participant(s)	Instrument(s)
China	CIOMP, Changchun, Jilin	Yu Peng Wang Xin Ye Dong Jun Yang	$\begin{aligned} & \text { SIAR-1 } \\ & \text { SIAR-2c } \end{aligned}$
Italy	European Commission JRC, Ispra, Varese	W. Zaaiman T. Sample A. Colli	PMO6-81109 PMO6-911204 21451 E6 25738E6 CH1 060460 CH1 930018 TMI 68835
Russia	VNIIOFI, Moscow	S. Morozova M. Pavlovich V. Pavlovich	MAR-1-1 MAR-1-2 MAR-1-3
Sweden	SP Swedish National Testing and Research Institute, Borås	S. Källberg A. Andersson	HF 15744
Thailand	Solar Energy Research Lab., Silpakorn University, Muang, Nakhon Pathom	I. Masiri R. Wattan J. Somchit	AHF 32454

Table 1.2: (continued)

Country	Institution	Participant(s)	Instrument(s)
The Netherlands	EKO Instruments Europe B.V., Leiden	A. Los K. Hoogendijk E. Worrell A. Akihito	PMO6-850402 MS54-S07122 PMO6-0802 (for CRP Tudor, Luxembourg)
The Netherlands	Hukseflux Thermal Sensors, Delft	K. van den Bos J. Konings	DR018117 CP01P CP01T CP01U
The Netherlands	Kipp \& Zonen BV, Delft	J. Mes I. Staupe	$\begin{aligned} & \text { PMO6-cc } 103 \\ & \text { CH1 } 940068 \\ & \text { CHP1 REF1 } \end{aligned}$
USA	ACRF, Billings OK	C. Webb	-
USA	ATLAS Weathering/DSET Laboratories, Phoenix AZ	E. Naranen	AHF 17142
USA	LASP, Boulder, CO	G. Kopp K. Heuermann	TIM-Witness
USA	NASA Langley, Hampton VA	F. Denn	AHF 31041 AHF 31105
USA	National Renewable Energy Lab., Golden CO	I. Reda T. Stoffel	AHF 23734 AHF 28968 AHF 29220 AHF 30713 TMI 68018
USA	The Eppley Laboratory Inc., Newport RI	J. R. Hickey T. Kirk	AHF 14915 AHF 27798 AHF 33396 (for AIST Japan)

1.3 Data Acquisition and Evaluation

The signals from the WSG instruments and additional WRC radiometers were acquired by a new data acquisition system based on 17 National Instruments PXI-4065 6.5-digit digital multimeters with NI PXI-2501 24-channel multiplexers. The system was controlled by a LabView application running on an industrial PC and operated flawlessly. The LabView application also triggered the timing signals as well as the initialization and readout of the data entry form for manually operated instruments
(see below). The major operational advantage of this new system lies in the improved flexibility to add/remove instruments on the fly and to analyze data in near-real-time, allowing to quickly detect and fix potential problems with participating instruments, without loosing an entire day worth of measurements.

The participating instruments were operated with their standard pointing and data acquisition equipment, either manually or automated.

The data from the manually operated instruments were typed into a java based data entry form by the operator. WLAN connections were used to initialize the web interface and to dump its content to the central data acquisition computer at end of each measurement series. Participants could start the data entry form either on their own laptop computer or borrow one from the WRC. They were also required to keep written records as a backup copy of their data and to double-check for typing errors in the web interface.

The data from computer controlled instruments (synchronized to the timing of the IPC's measurement series) had to be written to ASCII files containing the instrument's serial number in the header and three columns for date, time, and irradiance, respectively. The ASCII files were then either up-loaded to a dedicated directory on the IPC-XI FTP site or handed to the WRC staff on a USB memory stick. All data were ingested into the data acquisition and evaluation system at the end of each measurement day.

1.3.1 Timing of the Measurements

The measurements were taken in series of 21 minutes with a basic cadence of 90 seconds. Voice announcements and acoustic signals were used to inform the participants about the sequence of operation. All automated data acquisition systems were synchronized to Central European Time (CET). A network time server and a large reference clock on the measuring field were set up for this purpose. The time until the next measurement was also indicated on the web interface for manual operators. The timing for the different types of instrument was as follows:

- Ångström pyrheliometers: Before the start and after the end of the run the zero of the instrument was established. Alternating right and left strip readings were performed, starting with the right hand strip exposed to the sun. The following readings were paired as L-R, R-L, etc., yielding a total of 12 irradiance values per run.
- PAC3: the run started with the shutter closed, after 60 s the electrical heater ${ }^{1}$ was turned on for 40 s (this was introduced after IPC-III in order to have a well defined thermal state of the instrument independent of the operation sequence before the run). At 270 s the zero of the thermopile was read and the heater switched on for 180 seconds. At 450 s the heater voltage, current and thermopile was read, the heater turned off and the shutter opened. Starting at 540 s readings were taken every 90 s yielding 8 irradiance values per run. After the last reading the shutter was closed.
- HF- and TMI-type pyrheliometers: the run started with the shutter closed, after 90 s the thermopile zero was read and the electrical heater ${ }^{1}$ turned on until at 180 s the voltage, current and thermopile were read. The heater was then switched off and the shutter opened. From 270 s onward the thermopile signal was recorded every 90 s yielding 11 irradiance values per run. Some automated instruments performed the electrical calibration in between the series and/or read the irradiance every 30 seconds, consequently providing up to 39 irradiance values per run.

[^0]- PMO-, SIAR- and CROM-type pyrheliometers: the run started with a reference phase (shutter closed) of 90 s , followed by a measurement phase (shutter open) of 90 s . This sequence was repeated for the next 18 minutes. A total of 6 open and 7 closed readings were taken yielding a total of 6 irradiance values during a run. PMO2 was read at twice that pace, with a reference phase of 45 s and a measurement phase of 45 s , producing 13 irradiance values per run so that for all readings of the basic sequence a PMO 2 irradiance was available.
- Normal Incidence Pyrheliometers (NIP, CH1, etc.): These pyrheliometers recorded 12 irradiance values every 90 s after an initial zero reading at 90 seconds. Some instruments omitted the initial zero reading, thus yielding 13 irradiance readings.
- Other pyrheliometers: Prototype instruments such as the CSAR, DARA or TIM-Witness were using various modes of operation which are specific to their design. They all share the principle of electrical substitution and were synchronized to the 90 -seconds base cadence.

1.3.2 Data Evaluation

For each instrument the irradiance was obtained with the appropriate evaluation procedure as listed below. After each day a graphical print-out of the ratios to PMO 2 was put on display in the "Data Center" room to be reviewed by the participants. This simple but effective measure of quality control revealed instrumental problems in several cases which subsequently could be fixed quickly.
"Quick-look" print-outs were also produced during the day when an instrument was suspected to malfunction.

The procedure used to calculate the irradiance S of each instrument type is described below. The notations are:
$\mathrm{V}_{\text {th }} \quad$ output of the thermopile
$\mathrm{U}_{\mathrm{h}}, \mathrm{U}_{\mathrm{i}}$ voltage across the heater (h) or across the standard resistor (i)
$\mathrm{R}_{\mathrm{n}} \quad$ standard resistor
$\mathrm{C}_{1} \quad$ calibration factor
$\mathrm{C}_{2} \quad$ correction factor for lead heating
P electrical power in the active cavities

- Ångström-pyrheliometers: the current through the right or left strip was measured as voltage drop across a standard resistor and the irradiance was obtained as:

$$
\mathrm{S}=\mathrm{C}_{1} \frac{\mathrm{U}_{\mathrm{i}}(\text { left }) \mathrm{U}_{\mathrm{i}}(\text { right })}{R_{\mathrm{n}}^{2}}
$$

This corresponds to the geometric mean of the irradiances at the time of right and left readings. Thus, the ratio to WRR was calculated using the geometric mean of the WSG irradiances at the corresponding instances.

- PAC3, HF, and TMI type pyrheliometers: the irradiance was calculated from the thermopile output $\mathrm{V}_{\text {th }}(\mathrm{irrad})$ when the receiver was irradiated. The sensitivity was determined by the calibration during which the cavity was shaded and electrically heated and U_{h} and U_{i} were measured together with the corresponding thermopile output $\mathrm{V}_{\text {th }}(\mathrm{cal})$. Furthermore, the zero of the thermopile $\mathrm{V}_{\text {th }}(z e r o)$ was measured and subtracted from all thermopile readings.

$$
\mathrm{S}=\mathrm{C}_{1} \frac{\mathrm{~V}_{\text {th }}(\text { irrad })-\mathrm{V}_{\text {th }}(\text { zero })}{\mathrm{V}_{\text {th }}(\text { cal })-\mathrm{V}_{\mathrm{th}}(\text { zero })} \frac{\mathrm{U}_{\mathrm{n}}}{\left.\left.\mathrm{U}_{\mathrm{h}}-\frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{n}}} \mathrm{C}_{2}\right)\right)}
$$

- PMO-, SIAR- and CROM-type pyrheliometers: the irradiance was obtained from P (closed) averaged from the closed values before and after the open reading P (open).

$$
\mathrm{S}=\mathrm{C}_{1}(\mathrm{P}(\text { closed })-\mathrm{P}(\text { open }))
$$

The power calculation was done according to the prescription of the instrument type with

$$
\mathrm{P}=\mathrm{U}_{\mathrm{h}}^{2} \quad \text { or } \quad \mathrm{P}=\mathrm{U}_{\mathrm{h}} \mathrm{U}_{\mathrm{i}} \quad \text { or } \quad \mathrm{P}=\mathrm{U}_{\mathrm{h}} \frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{n}}}
$$

The SIAR-type radiometers slightly deviate from this scheme in that they subtract the open power from the preceding closed power rather than the average of the preceding and successive closed reading.

- Normal Incidence Pyrheliometer (NIP, CH1, etc.): the thermopile reading was divided by the calibration factor after subtraction of the zero point reading ${ }^{1}$.
- PMO2: As during preceding IPCs, PMO2 was used as the reference instrument for the daily summaries because it can be operated fast enough to provide an irradiance value every 90 seconds. The values of PMO2 were obtained with the algorithm for PMO-type pyrheliometers. At the end of the open phase, 6 readings were taken in rapid succession within about two seconds. The standard deviation of the 6 readings was used during the final evaluation as a quality control parameter to assess the atmospheric stability during each acquisition sequence (see Sect. 2.1).

1.3.3 Auxiliary Data

The meteorological parameters (air temperature, relative humidity, atmospheric pressure) were obtained from the MeteoSwiss' automated weather station SwissMetNet located at PMOD/WRC (see Sect. 4.2). Wind speed and direction sensors were set up at the south and west corners of the measuring field as well as by the WSG tracker.

A cloud sensor flagged all data points when clouds were within 15 degrees of the Sun. The flagged points were not used to evaluate Ångstrom type pyrheliometers.

Precision Filter Radiometers (PFR) were used to determine Aerosol Optical Depth (AOD) at four wavelengths ($367.6 \mathrm{~nm}, 412.0 \mathrm{~nm}, 501.2 \mathrm{~nm}$, and 862.4 nm , see Sect. 4.3).

The measurements and inversion results (mainly scattering phase functions) from the Aerosol Robotic Network (AERONET) Davos station (located at PMOD/WRC) were used to correct for aureole effects (circumsolar radiation) in cavity pyrheliometers according to their view-limiting geometry ${ }^{2}$.

1.4 Approvement and Dissemination of the Results

According to Resolution 1 of CIMO-XI an Ad-hoc Group was established to discuss the preliminary results of the IPC-XI, based upon criteria defined by the WRC, evaluate the above reference and recommend the updating of the calibration factors of the participating instruments. It was chaired by the Bruce W. Forgan, (Australia, RA V) and composed as follows: Kolawole Muyiolu (Nigeria, RA I), Meena Lysko (South Africa, RA I), Rajendra Sharma (India, RA II), Pedro Mostraj Aquilera (Chile, RA III), David Halliwell (Canada, RA IV), Don Nelson (USA, RA IV), Thomas Carlund (Sweden, RA VI), Martin Mair (Austria, RA VI), Krunoslav Premec (Croatia, RA VI). The WRC was represented by Wolfgang Finsterle.

The procedures used to compute the new WRR factors of the WSG and participating instruments are explained in Section 2.2.

[^1]
Chapter 2 Measurements and Results

Measurements were taken on 14 days (2010 September 28, October 2, 3, 4, and 6-15). October $8^{\text {th }}$ and $12^{\text {th }}$ were the most productive days, each yielding 17 series' of 21 minutes duration. In total 164 series' were acquired. All data from September $28^{\text {th }}$ (1 series), October $2^{\text {nd }}$ (10 series'), $4^{\text {th }}$ (3 series'), and $6^{\text {th }}$ (15 series') were rejected due to bad or unstable weather conditions on those days. Of the remaining days all data points that satisfy the following data selection criteria were considered in the final evaluation.

2.1 Data Selection Criteria for the Final Evaluation

The Ad-hoc Group responsible for the approval of the final evaluation procedure (c.f. Sect. 1.4) agreed on the following criteria for the acceptance of IPC-XI data:

1. Any series or part there-of were the field of view of Angstrom pyrheliometers is obscured by local topographic features (e.g. mountain sides) shall not be considered as valid data.
2. That no measurements be used for Angstrom pyrheliometers if a cloud is within 15 degrees of the sun. No measurements will be used for the absolute cavity radiometers (field of view $=5$ degrees) if a cloud is within 8 degrees of the sun.
3. That no measurements be used if the wind speed is greater than $2.5 \mathrm{~m} / \mathrm{s}$.
4. That no data be used if the 500 nm AOD is greater than 0.120 .
5. That an individual point be excluded from the series if the variation of the 8 fast PMO2 measurements is greater than $0.5 \mathrm{Wm}-2$.
6. That a minimum of 150 acceptable data points be taken by PMO2 over a minimum of three days during the comparison period. $0.5 \mathrm{Wm}^{-2}$.
7. That the minimum number of acceptable data points be 150 for the PMO2 taken over a minimum of three days during the comparison period.

2.2 Computation of the New WRR Factors

2.2.1 WSG Instruments

The WRR factor $W R R_{i, I P C}$ for the WSG instrument $i, i \in\{P M O 2$, CROM2L, MK67814, HF18748, PAC3, PMO5\}, by definition is the ratio of the WRR to the WSG instrument i averaged over the duration of the IPC:

$$
W R R_{i, I P C-X I}=\left\langle\frac{W R R(t)}{W S G_{i}(t)}\right\rangle_{t},
$$

where $W R R(t)$ and $W S G_{i}(t)$ are the reference irradiance and the irradiance measured by WSG instrument i at the time t, and $\langle x(t)\rangle_{t}$ denotes the temporal average of $x(t)$. The reference irradiance ($W R R$) is defined as the mean value of the simultaneous readings of at least four WSG instruments, multiplied by their corresponding WRR factors from the previous IPC. Because the ratios of PAC3 and

Table 2.1: New WRR-factors for the WSG instruments computed using PMO2, PMO5, CROM2L, and MK67814 and the IPC-X WRR-factors.

Instrument	WRR factor IPC-X	WRR factor IPC-XI	Standard Uncertainty $\frac{\sigma}{\sqrt{N-1}}$ [ppm]	\# of points N	Change [ppm] IPC-XI-IPC-X
PMO2	0.998618	$\mathbf{0 . 9 9 8 6 2 3}$	29	554	5
PMO5	0.998982	$\mathbf{0 . 9 9 9 0 5 2}$	22	554	70
CROM2L	1.002998	$\mathbf{1 . 0 0 3 1 5 7}$	21	544	159
MK67814	1.000708	$\mathbf{1 . 0 0 0 4 5 8}$	21	497	-250
PAC3	1.001116	$\mathbf{1 . 0 0 2 1 1 7}$	26	381	1000
HF18748	0.996274	$\mathbf{0 . 9 9 7 1 3 8}$	26	493	867

HF18748 with respect to the WRR suffered from inexplicable jumps during the past five years these two instruments were not used to compute the reference irradiance during IPC-XI. With $j \in\{\mathrm{PMO} 2$, CROM2L, MK67814, PMO5\} we calculate the reference irradiance as

$$
W R R(t)=\left\langle W S G_{j}(t) * W R R_{j, I P C-X}\right\rangle_{j}
$$

We thus get

$$
W R R_{i, I P C-X I}=\left\langle\frac{\left\langle W S G_{j}(t) * W R R_{j, I P C-X}\right\rangle_{j}}{W S G_{i}(t)}\right\rangle_{t}
$$

where $i \in\{\mathrm{PMO} 2, \mathrm{CROM} 2 \mathrm{~L}, \mathrm{MK} 67814, \mathrm{HF} 18748, \mathrm{PAC} 3, \mathrm{PMO} 5\}$ and $j \in\{\mathrm{PMO} 2, \mathrm{CROM} 2 \mathrm{~L}$, MK67814, PMO5\}.

2.2.2 Participating Instruments

For each participating instrument k the new WRR factor is calculated according to

$$
W R R_{k, I P C-X I}=\left\langle\frac{W R R(t)}{I r r_{k}(t)}\right\rangle_{t}
$$

where $\operatorname{Irr}_{k}(t)$ is the irradiance measured by the instrument k at the time t and $W R R(t)$ the coinstantaneous reference irradiance.

Temporal averaging is done by fitting a gaussian to the distribution of WRR-to-instrument ratios. Outliers are sucessively removed until the ratios are normally distributed with a probability higher than 90%, or until all ratios are within a certain range of their arithmetic mean value ${ }^{1}$.

The new WRR factors for the WSG and all participating instruments are listed in Table 2.2.

2.3 Status of the WSG and Transfer of the WRR

The main objective of the periodic IPC's is the dissemination of the World Radiometric Reference (WRR) in order to ensure worldwide homogeneity of meteorological radiation measurements. The

[^2]WRR is realized by the WSG which is frequently inter-compared at PMOD/WRC to detect possible deviations of individual radiometers with respect to the group average and to ensure the stability of the WRR. In addition to this internal stability check the stability of the WRR is assessed during IPCs by comparing the WSG to other pyrheliometers that have participated in previous IPC's.

Since IPC-X, which was held in 2005, two member instruments of the WSG failed in internal stability checks. The instrument HF18748 suffered from several sensitivity drops of up to -0.1%. The sensitivity of PAC3 also dropped sharply by $\sim 0.05 \%$ in summer 2011. Non-intrusive checks of both instruments did not reveal any contamination in their cavities.

The WRR factors of the remaining four WSG instruments (PMO2, PMO5, CROM2L, MK67814) changed by less than $\pm 50 \mathrm{ppm}$ per year. These instruments are considered stable over the past five years and were used to calculate the new WRR.

Table 2.2: The new WRR factors for the participating instruments

Instrument	C_{1}	C_{2}	WRR Factor	$\begin{gathered} \sigma \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{gathered} N \\ \text { used } \end{gathered}$	$\begin{gathered} N \\ \text { tot } \end{gathered}$	Country/ Owner
0501657	7.50000	0.000	1.014357	10310	551	4382	WRC
080002	9.62000	0.000	1.000254	1668	547	4382	Spain
080004	10.2100	0.000	1.007385	4436	417	1389	Morocco
080015	7.80000	0.000	0.997799	1675	554	4217	Spain
0804	51397.2	0.000	0.999914	645	364	696	Lithuania
090090	8.10000	0.000	1.003663	1187	554	4217	Spain
21451E6	8.42000	0.000	0.999193	7691	453	2719	JRC Italy
25738E6	7.92000	0.000	0.998843	6621	453	2719	JRC Italy
28335	8.33000	0.000	1.009038	5364	424	1549	Sudan
31144E6	8.04000	0.000	0.997184	5636	554	4382	WRC
79-122	600.000	0.000	0.999401	638	540	982	WRC
79-123	601.610	0.000	0.937200	6131	344	531	Columbia
80022	597.875	0.000	1.003082	538	493	982	WRC
850402	24.0720	0.000	1.003330	1230	102	169	EKO The Netherlands
850405	24.1940	0.000	1.000565	1609	420	705	Estonia
850409	24.0780	0.000	1.004183	574	539	982	ESA/ESTEC The Netherlands
970147	11.1500	0.000	0.996057	1745	554	4382	WRC
A12578	4465.90	0.000	1.008580	4558	134	437	Philippines
A13439	4426.32	0.000	1.001350	1468	396	1208	Slovakia
A13444	6.21000	0.000	1.036795	3545	312	1172	Kenya
A18020	4647.26	0.000	1.002650	1468	323	905	Peru
A212	10556.0	0.000	0.996482	3117	258	616	Russia
A26839	8.11000	0.000	1.007547	2069	361	1149	Mozambique
A576	5885.13	0.000	0.990369	4001	382	1318	Nigeria
A702	6177.80	0.000	0.998769	4794	373	1209	Romania
AHF-AWX34320	1.00000	0.000	0.992830	845	442	4774	Canada
AHF-AWX34321	1.00000	0.000	0.994550	847	442	4774	Canada
AHF14915	20010.0	0.000	0.999682	920	392	5331	Eppley USA
AHF17142	19959.0	0.000	0.998358	909	397	4788	ATLAS-DSET USA
AHF18742	20089.3	0.066	1.002281	2277	361	1252	India
AHF23734	1.00000	0.000	0.998281	660	412	5549	NREL USA

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	WRR Factor	$\begin{gathered} \sigma \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{gathered} N \\ \text { used } \end{gathered}$	$\begin{gathered} N \\ \text { tot } \end{gathered}$	Country/ Owner
AHF27798	20020.0	0.000	0.999018	990	395	5331	Eppley USA
AHF28486	1.00000	0.000	0.997308	674	422	4899	Spain
AHF28553	19986.0	0.000	0.996842	932	463	8223	NOAA USA
AHF28968	19980.2	0.000	0.997734	657	420	5549	NREL USA
AHF29220	19999.0	0.000	0.997691	670	418	5549	NREL USA
AHF29223	19998.0	0.066	0.997352	741	384	1458	Mexico
AHF29225	20004.2	0.000	0.996896	1029	336	1240	Algeria
AHF30112	19936.7	0.000	1.011725	1972	74	546	Argentina
AHF30713	19989.0	0.000	0.997548	680	421	5549	NREL USA
AHF30716	20009.2	0.066	0.997136	657	360	1042	Poland
AHF31041	19999.2	0.000	0.996286	701	441	5162	NASA Langley USA
AHF31105	1.00000	0.000	0.999964	707	431	5123	NASA Langley USA
AHF31110	19989.0	0.066	0.996431	629	399	1268	UK
AHF31117	1.00000	0.000	0.998861	641	401	4091	South Africa
AHF32446	19986.9	0.000	1.000046	745	444	1694	Japan
AHF32455	20009.2	0.000	1.000276	595	401	6672	WRC
AHF33396	1.00000	0.000	0.998079	926	396	5330	AIST Japan
AHF36011	1.00000	0.000	0.996933	2198	367	1454	China
AHF36013	1.00000	0.000	1.058115	2327	384	9430	Thailand
AWX31114	1.00000	0.000	1.001244	891	462	8604	NOAA USA
AWX32448	1.00000	0.000	0.999939	1149	465	8616	NOAA USA
AWX33393	2.00090	0.000	0.999362	819	427	5715	Sweden
CH1020283	1.00000	0.000	0.997677	1426	516	1776	KNMI The Netherlands
CH1060460	10.0700	0.000	1.002334	2034	449	2759	JRC Italy
CH1930018	10.8500	0.000	1.000748	3256	453	2759	JRC Italy
CH1940068	10.3700	0.000	0.997717	955	147	1904	K\&Z The Netherlands
CH1940072	10330.0	0.000	1.007576	2507	439	4940	Croatia
CH1950086	1.00000	0.000	1.005036	1316	329	5776	Mozambique
CHP100288	1.00000	0.000	0.999634	1924	434	4940	Croatia
CHP1100245	1.00000	0.000	1.000486	1413	449	5333	Austria
CHP1REF1	7.92000	0.000	0.997956	1900	179	2268	K\&Z The Netherlands
CP01P	1.00000	0.000	1.021933	885	47	234	Hukseflux The Netherlands
CP01T	1.00000	0.000	1.008928	629	47	286	Hukseflux The Netherlands
CP01U	1.00000	0.000	1.018302	1772	49	286	Hukseflux The Netherlands
CR09L	12780.9	0.000	0.998363	882	220	407	Belgium
CROM2L	127.687	0.000	1.003157	449	544	892	WRC
CSAR	1.00000	0.000	0.992123	519	28	2811	WRC
DARAAREFB	1.00000	0.000	1.004210	843	143	1859	WRC
DARAAREFC	1.00000	0.000	1.004358	1260	141	1278	WRC

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	WRR Factor	[ppm]	$\begin{gathered} N \\ \text { used } \end{gathered}$	$\begin{gathered} N \\ \text { tot } \end{gathered}$	Country/ Owner
DARABREFC	1.00000	0.000	1.006060	1330	214	2612	WRC
DARACREFB	1.00000	0.000	1.004984	1161	143	1859	WRC
DR018117	1.00000	0.000	1.025037	1550	49	286	Hukseflux The Netherlands
EPAC11402	10024.0	0.000	1.000684	2017	145	5099	WRC
EPAC13617	10046.9	0.064	1.001243	1448	385	1187	Norway
HF15744	20020.0	0.000	0.998085	708	303	1117	Sweden
HF18747	20014.0	0.000	1.001865	729	483	5125	Canada
HF18748	19989.0	0.070	0.997138	571	493	5058	WRC
HF19746	20013.8	0.066	0.998886	811	262	718	Hungary
HF20406	20038.0	0.000	1.002435	869	477	5086	Canada
HF27157	20037.6	0.000	0.999647	1469	394	1172	Germany
HF27159	20030.0	0.000	1.000021	950	514	1797	KNMI The Netherlands
HF27160	20030.0	0.000	0.996467	780	468	4517	Australia
HF27162	20020.0	0.066	0.999212	1050	345	1049	Israel
HF27796	19986.1	0.066	0.997204	1112	373	1221	Thailand
HF30497	19943.8	0.000	0.999623	641	438	4097	Czech Republic
MAR-1-2	35600.0	0.000	1.000116	1048	94	157	Russia
MAR-1-3	1.00000	0.000	0.999991	884	92	179	Russia
MK67814	10007.0	0.000	1.000458	465	497	5102	WRC
MS54-S07122	1.00000	0.000	1.003003	1008	94	10093	EKO The Netherlands
NIP31822E6	1.00000	0.000	0.996873	5200	349	5776	Mozambique
PAC3	9962.60	0.070	1.002117	509	381	3242	WRC
PMO2	600.163	0.000	0.998623	692	554	11364	WRC
PMO5	2565.14	0.000	0.999052	528	554	982	WRC
PMO6-0101-CERNY-PS	1.00000	0.000	1.005155	462	437	14068	WRC
PMO6-0101-CERNY-T	1.00000	0.000	1.004938	502	486	7473	WRC
PMO6-0301	51161.5	0.000	1.000588	820	426	1126	Spain
PMO6-0401D	50000.0	0.000	1.020979	477	312	1075	WRC
PMO6-0405	50926.8	0.000	0.999684	593	414	684	Germany
PMO6-0801D	1.00000	0.000	1.137201	1356	484	1514	WRC
PMO6-0802	50000.0	0.000	1.001435	34269	161	208	Luxemburg
PMO6-0803D	51221.0	0.000	1.000364	473	312	1077	WRC
PMO6-0810D	50000.0	0.000	1.018938	499	389	1392	WRC
PM06-0811D	51037.6	0.000	1.000835	541	496	1481	WRC
PMO6-0812D	50642.6	0.000	1.004392	668	501	1484	WRC
PMO6-0814D	51084.6	0.000	1.002749	743	271	865	WRC
PMO6-0815D	50972.3	0.000	1.001582	548	458	1565	WRC
PMO6-0816D	51022.2	0.000	1.015310	8442	242	594	WRC
PMO6-5	50565.5	0.000	0.999116	725	419	690	Germany
PMO6-81109	23.9995	0.000	0.998577	709	426	2758	JRC Italy

Table 2.2: (continued)

Instrument	C_{1}	C_{2}	WRR Factor	σ $[\mathrm{ppm}]$	N used	N tot	Country/ Owner
PMO6-850410	609.170	0.000	$\mathbf{0 . 9 9 0 8 9 0}$	1155	434	1558	Chile
PMO6-911204	24.1040	0.000	$\mathbf{0 . 9 9 9 7 1 1}$	1049	437	2758	JRC Italy
PMO6-CC0403	50489.5	0.000	$\mathbf{1 . 0 0 0 1 6 0}$	732	425	773	Japan
PMO6850406	24.0008	0.000	$\mathbf{1 . 0 0 0 1 9 8}$	876	323	664	China
PMO8-P01	1.00000	0.000	$\mathbf{0 . 9 9 4 8 1 2}$	6995	497	982	WRC
PMO811108	24.1010	0.000	$\mathbf{1 . 0 0 0 6 5 7}$	727	417	1890	Sweden
SIAR-1A	23.6313	0.000	$\mathbf{1 . 0 0 2 4 0 1}$	994	440	1505	China
SIAR-2A	1.00000	0.000	$\mathbf{0 . 9 9 1 6 9 6}$	737	495	2107	WRC
SIAR-2B	1.00000	0.000	$\mathbf{1 . 0 0 0 2 8 6}$	668	427	2107	WRC
SIAR-2C	1.00000	0.000	$\mathbf{0 . 9 9 9 8 3 9}$	1124	441	1505	China
TIM-WITNESS	1.00000	0.000	$\mathbf{0 . 9 9 7 3 0 3}$	1420	278	1114	LASP USA
TMI67502	1.00390	0.000	$\mathbf{0 . 9 9 9 2 9 4}$	1024	454	8145	NOAA USA
TMI67604	1.00520	0.000	$\mathbf{0 . 9 9 8 2 2 6}$	1343	440	1589	UK
TMI68016	10031.5	0.000	$\mathbf{0 . 9 9 9 8 5 8}$	758	462	4918	France
TMI68018	1.00460	0.000	$\mathbf{0 . 9 9 6 8 0 4}$	643	415	5549	NREL USA
TMI68025	1.00200	0.000	$\mathbf{0 . 9 9 8 6 1 3}$	921	436	5340	Austria
TMI68835	1.00000	0.000	$\mathbf{1 . 0 0 0 9 8 0}$	1049	436	4686	JRC Italy
TMI69137	10020.0	0.000	$\mathbf{1 . 0 0 1 7 5 2}$	841	467	4520	Australia

2.4 External stability check of the WSG

In Section 2.3 the stability of the WSG was checked by analyzing the trends of individual members of the WSG with respect to the group's average. Here we present an external assessment of the stability of the WSG with respect to all cavity radiometers which have participated in at least two IPCs since 1980 (c.f. Fig. 2.1). This analysis confirms the long-term stability of the WSG within the required uncertainty level of 0.3%. Compared to last IPC (IPC-X, 2005) the WRR factors of HF-type instruments changed by -151 ppm on average. For the "SlowRad" instruments the apparent change is +316 ppm . The statistical uncertainties ($1-\sigma$) of these averages are 340 ppm (HF) and 960 ppm ("SlowRad"), respectively. We thus conclude that the WSG has not significantly drifted over the past five years. For completeness the history of WRR factors since 1980 (IPC-V) is given in Table 2.3 for all participating instruments. Note that in this table the raw WRR factors are listed while normalized factors were used for assessing the stability of the WSG. Normalization was necessary because some instruments used different calibration factors at different times, which produces spurious changes in their WRR factors.

Table 2.3: The history of WRR factors. In this table the raw factors are listed. They depend on the calibration constant which was used which may have changed with time. In the WSGstability analysis presented in Section 2.4 and Figure 2.1 these factors were re-normalized accordingly.

Instrument	$I P C-V$	$I P C-V I$	$I P C-V I I$	$I P C-V I I I$	$I P C-I X$	$I P C-X$	$I P C-X I$
A212	1.019121	0.999320	1.001542	1.001750	1.000650	1.003381	0.996482

A576	1.020130	1.005233	1.001071	1.000460	0.997370	1.000050	0.990369
A702				1.029100	1.003940	1.005965	0.998769
A12578				1.041370	1.005990	1.006532	1.008580
A13439				1.022990	1.002370	1.003291	1.001350
A13444			1.010458				1.036800
A18020		0.998700				1.004923	1.002650
CH1940072						1.005958	1.007580
N-28335				1.003039			1.009040
EPAC11402					0.999250	1.000560	1.000680
EPAC13617	1.003704	1.002801	0.999480				1.001240
HF15744	1.000640	1.000030	0.999650	0.999470	0.999160	0.998034	0.998085
HF18747	1.001964	0.999230	0.999930	1.000950	1.002140	1.002677	1.001870
HF19746	0.999520	0.999940	1.001603	0.999190	0.999660	0.998782	0.998886
HF20406				1.001370	1.003710	1.004066	1.002430
HF27157				1.000380	0.999020	0.998722	0.999647
HF27159			0.999271	0.998880		0.998004	1.000020
HF27162			1.000370	1.000960	1.000820	1.000180	0.999212
HF27796					0.996910	0.996979	0.997204
HF29223				0.997450	0.997470	0.996761	0.997352
AHF14915	0.998751	0.998421	0.999980	1.000460	1.000260	0.999640	0.999682
AHF17142	0.998801	0.997733	0.998901	0.998860	0.998930	0.999141	0.998358
AHF18742						1.003773	1.002280
AHF27160			0.997267	0.997090	0.996770	0.996910	0.996467
AHF27798			0.998363	0.998980	0.999880	0.999410	0.999018
AHF28553				0.997560	0.997330	0.996105	0.996842
AHF28968				0.998720	0.998660	0.997765	0.997734
AHF29220				0.998620	0.998460	0.997556	0.997691
AHF29225					0.997090	0.996105	0.996896
AHF30497					0.997740	0.999350	0.999623
AHF30713					0.998610	0.997512	0.997548
AHF30716					0.997450	0.997157	0.997136
AHF31041					0.998130	0.996294	0.996286
AHF31105						1.001649	0.999964
AHF31110					0.997890	0.997211	0.996431
AHF32446					0.999750	0.998873	1.000050
AHF32448					1.000310	0.999874	0.999939
AHF32455						0.999090	1.000280
AHF33396						0.997951	0.998079
AWX33393						0.997281	0.999362
TMI67502	0.999290	0.998471	1.000390	0.998660	0.999660	0.999480	0.999294
TMI67604	1.002376	1.000932	1.001402	1.002390	0.999280	0.998792	0.998226
TMI68016	1.001492	0.999830	1.001242	1.000500	0.997790	1.000090	0.999858
TMI68018			0.998692		0.998480	0.997138	0.996804
TMI68025			0.999460	0.999860	1.000060	0.998135	0.998613
TMI69137				1.002790	1.002300	1.001703	1.001750
MAR-1-2				0.999610		0.998702	1.000120
CROM9L					0.998570	0.999111	0.998363

PMO6-5	1.006756	1.000100	0.998602	0.997980	1.000530	0.999960	0.999116
PMO6-79-122			0.996890	0.999970	0.999860	1.000390	0.999401
PMO6-79-123					1.003400	1.000510	0.937200
PMO6-80022		1.000230	0.996890	0.996130	0.996990	0.997944	1.003080
PMO6-811108		0.999210	0.999970	1.000110	0.999970	0.998114	1.000660
PMO6-811109					0.999460	0.998412	0.998577
PMO6-850405				1.000370	0.999290	0.999191	1.000560
PMO6-850406					1.000320	0.999440	1.000200
PMO6-850410				1.001800	1.015280	0.987030	0.990890
PMO6-911204					1.000810	0.999011	0.999711
SIAR-1 (SIAR-1A)					0.999220	1.001924	1.002400
SIAR-2A						1.000623	0.991696
SIAR-2B						0.998620	1.000290
SIAR-2C						1.000087	0.999839

2.5 Saharan Dust Event (SDE)

During the night of October $7^{\text {th }} / 8^{\text {th }}$ a dust cloud from the Sahara desert has been transported over Switzerland by high-altitude winds. The appearance of the dust particles is reflected in an excess of large particles ($>1 \mu \mathrm{~m}$) in the AERONET inversion results on the corresponding days (c.f. Fig. 2.2). The particle distribution significantly affects the scattering phase function (scattering angle) and thus changes the aureole radiation. Instruments with different view-limiting geometries see either more or less of this change. We use the view-limiting geometries from Table 2.4 together with the scattering phase functions (see Sect. 4.5), the Aerosol Optical Depth (AOD, see Sect. 4.3), and other scattering parameters (Sect. 4.4) to calculate the aureole correction with SMARTS (Gueymard, C. A., Solar Energy, 71(5), 2001) depending on the view-limiting geometry of each type of cavity radiometer ${ }^{2}$. The aureole correction is calculated with respect to the view-limiting geometry recommended by the CIMO Guide. Hence, all HF- and PMO6-type radiometers which follow the CIMO recommendations very closely do not need this correction, although we applied it for sake of consistency. On the other hand, on October $8^{\text {th }}$ the correction can be as large as -0.2% in the case of the SIAR. Also PMO2 and PMO5 require large corrections of -500 ppm and +600 ppm , respectively.

The correction factors for the WSG are plotted in Figure 2.3.

[^3]

- MAR-1-1 +MAR-1-2 -MAR-1-3 -CROM3L -CROM9L (CRO9L) =CROM9L (CR09L) *PMO6-0401D -PMO6-0403 (PMO6-CC0403) - PMO6-5 -PMO6-G - PMO6-C - PMO6-9 -PMO6-10 - PMO6-11 -PMO6-79-122 \#PMO6-79-123 -PMO6-80022 - PMO6-811103 - PMO6-811104 +PMO6-811106 -PMO6-811107 -PMO6-811108 (PMO811108) -PMO6-811109 (PMO6-81109) *PMO6-850401 - PMO6-850402 -PMO6-850405 -PMO6-850406 (PMO6850406 +PMO6-850407 -PMO6-850409 - PMO6-850410 *PMO6-911204 $=$ PMO6-0101 -PMO6-0804 - SIAR-1 (SIAR-1A) - SIAR-2A - SIAR-2B =SIAR-2C $=$ ang. SlowRad	

Figure 2.1: The historic development of the WRR factors of all cavity radiometers which have participated in at least two IPC's since 1980 (IPC-V). The top panel shows how the WRR factors of HF-type pyrheliometers (including PAC, EPAC, and TMI) changed between consecutive IPCs since 1980 (IPC-V). The same is shown on the bottom panel for "SlowRad"-type radiometers, i.e. radiometers with alternating open/closed measurements. Note that in this analysis all WRR factors are normalized to the calibration constant which was used at the time.

Figure 2.2: The size distribution of aerosol particles measured by the AERONET Davos station on October $7^{\text {th }}$ (top panel) and $8^{t h}$ (bottom panel). The excess in large particles $(>1 \mu \mathrm{~m})$ gradually normalizes during the following week. The size distribution significantly affects the scattering phase function and thus the aureole radiation.

Figure 2.3: The aureole correction before and during the Saharan dust event depending on type fo instrument. The correction was applied to all cavity instruments. In the top panel the symbols for HF/AHF are hidden behind MK/TMI, CROM, and EPAC. (Calculations and graphics by André Fehlmann.)

Table 2.4: The view-limiting geometries for each type of instrument (all dimensions in mm).

Instrument (Type)	front aperture radius	rear aperture radius	distance be- tween aper- tures
PMO2	3.6	2.5	75.0
PMO5	3.7	2.5	95.4
PMO6	4.2	2.5	98.5
PAC3	8.18	5.64	190.5
CROM2L	6.29	5.0	144.05
HF	5.81	3.99	134.7
TMI	8.2	5.56	187.6
SIAR	5.7	4.0	100.0

Chapter 3 Conclusions and Recommendations

Despite the partial failure of two WSG instruments (PAC3 and HF18748, c.f. Sect. 2.4) the WRR is considered stable within the limits required by the WMO-CIMO Guide. The new WRR factors are calculated based on the average readings of PMO2, PMO5, CROM2L, and MK67814. Compared to IPC-X most participating instruments show insignificant changes in their WRR factors, which confirms the stability of the WRR. The recommended WRR factors are listed in Table 2.2.

The flexibility offered by the new data acquisition system allowed for quick response in case of suspected problems with individual instruments. In serveral cases small stability issues of participating instruments could be identified and fixed with only minimal loss of observing time.

The Saharan Dust Event (SDE) which affected the measurements from October $8^{\text {th }}$ through $13^{\text {th }}$ revealed the susceptibility of direct solar irradiance measurements to atmospheric conditions and emphasized the importance to follow the recommendations concerning view-limiting geometry. While it was possible to compensate for the geometry-induced SDE effect the required auxiliary data (AOD, scattering phase function) and sophisticated models are not normally available at field sites. We thus strongly recommend the use of pyrheliometers which obey the CIMO recommendations for view-limiting geometry.

3.1 Graphical Representation of the Results

On the following pages are the data plots for each instrument. The deviation from WRR is plotted in percents. All the points which were used for the analysis (i.e. the points fulfilling the selection criteria listed in Sect. 2.1) have been plotted with a corresponding histogram on the side.

080002: WRR factor $=1.000250, \sigma=0.001669, n=547$

0804: WRR factor=0.999914, $\sigma=0.000645, n=364$

28335: WRR factor $=1.009040, \sigma=0.005413, n=424$

79-122: WRR factor=0.999401, $\sigma=0.000638, n=540$

79-123: WRR factor=0.937200, $\sigma=0.005746, n=344$

850402: WRR factor=1.003287, $\sigma=0.001234, n=102$

970147: WRR factor=0.996057, $\sigma=0.001739, n=554$

A12578: WRR factor=1.008580, $\sigma=0.004598, n=134$

A13444: WRR factor=1.036800, $\sigma=0.003676, n=312$

A18020: WRR factor=1.002650, $\sigma=0.001472, n=323$

A576: WRR factor $=0.990369, \sigma=0.003963, n=382$

A702: WRR factor $=0.998769, \sigma=0.004789, n=373$

AHF-AWX34320: WRR factor=0.992830, $\sigma=0.000839, n=442$

AHF14915: WRR factor=0.999682, $\sigma=0.000920, n=392$

AHF17142: WRR factor $=0.998358, \sigma=0.000908, n=397$

AHF18742: WRR factor=1.002280, $\sigma=0.002283, n=361$

AHF23734: WRR factor=0.998281, $\sigma=0.000659, n=412$

AHF27798: WRR factor=0.999018, $\sigma=0.000989, n=395$

AHF28486: WRR factor=0.997308, $\sigma=0.000672, n=422$

AHF28553: WRR factor $=0.996842, \sigma=0.000930, n=463$

AHF28968: WRR factor $=0.997734, \sigma=0.000656, n=420$

AHF29220: WRR factor=0.997691, $\sigma=0.000669, n=418$

AHF29225: WRR factor $=0.996896, \sigma=0.001026, n=336$

AHF30112: WRR factor $=1.011730, \sigma=0.001995, n=74$

AHF30713: WRR factor=0.997548, $\sigma=0.000679, n=421$

AHF30716: WRR factor=0.997136, $\sigma=0.000656, n=360$

AHF31041: WRR factor=0.996286, $\sigma=0.000699, n=441$

AHF31105: WRR factor=0.999964, $\sigma=0.000708, n=431$

AHF31110: WRR factor=0.996431, $\sigma=0.000627, n=399$

AHF31117: WRR factor=0.998861, $\sigma=0.000641, n=401$

AHF33396: WRR factor=0.998079, $\sigma=0.000924, n=396$

AHF36013: WRR factor $=1.058110, \sigma=0.002462, n=384$

AWX33393: WRR factor=0.999362, $\sigma=0.000819, n=427$

CH1020283: WRR factor $=0.997677, \sigma=0.001423, n=516$

CH1930018: WRR factor=1.000750, $\sigma=0.003259, n=453$

CH1940068: WRR factor=0.997717, $\sigma=0.000954, n=147$

CH1950086: WRR factor $=1.005040, \sigma=0.001323, n=329$

CHP100288: WRR factor=0.999634, $\sigma=0.001924, n=434$

CP01P: WRR factor=1.021933, $\sigma=0.000905, n=47$

CP01U: WRR factor=1.018302, $\sigma=0.001805, n=49$

CR09L: WRR factor $=0.998363, \sigma=0.000881, n=220$

CSAR: WRR factor $=0.992123, \sigma=0.000515, n=28$

DARAAREFB: WRR factor=1.004210, $\sigma=0.000847, n=143$

DARACREFB: WRR factor $=1.004984, \sigma=0.001168, n=143$

EPAC11402: WRR factor $=1.000680, \sigma=0.002019, n=145$

EPAC13617: WRR factor $=1.001240, \sigma=0.001450, n=385$

HF18747: WRR factor=1.001870, $\sigma=0.000731, n=483$

HF18748: WRR factor $=0.997230, \sigma=0.000569, n=493$

HF27157: WRR factor=0.999647, $\sigma=0.001469, n=394$

HF27160: WRR factor $=0.996467, \sigma=0.000777, n=468$

HF27162: WRR factor=0.999212, $\sigma=0.001049, n=345$

HF27796: WRR factor=0.997204, $\sigma=0.001109, n=373$

HF30497: WRR factor $=0.999623, \sigma=0.000641, n=438$

MAR-1-2: WRR factor $=1.000120, \sigma=0.001049, n=94$

PAC3: WRR factor $=1.002195, \sigma=0.000510, n=381$

PMO2: WRR factor=0.998604, $\sigma=0.000691, n=554$

PMO6-0101-CERNY-PS: WRR factor=1.005155, $\sigma=0.000465, n=437$

PMO6-0101-CERNY-T: WRR factor=1.004938, $\sigma=0.000505, n=486$

PMO6-0401D: WRR factor=1.020980, $\sigma=0.000488, n=312$

PMO6-0405: WRR factor=0.999684, $\sigma=0.000594, n=414$

PMO6-0801D: WRR factor=1.137201, $\sigma=0.001542, n=484$

PMO6-0802: WRR factor=1.001435, $\sigma=0.034318, n=161$

PMO6-0803D: WRR factor=1.000364, $\sigma=0.000473, n=312$

PMO6-0810D: WRR factor=1.018938, $\sigma=0.000509, n=389$

PMO6-0811D: WRR factor=1.000835, $\sigma=0.000542, n=496$

PMO6-0812D: WRR factor=1.004392, $\sigma=0.000671, n=501$

PMO6-0814D: WRR factor=1.002749, $\sigma=0.000745, n=271$

PM06-0815D: WRR factor=1.001582, $\sigma=0.000549, n=458$

PMO6-0816D: WRR factor=1.015310, $\sigma=0.008572, n=242$

PMO6-5: WRR factor $=0.999116, \sigma=0.000725, n=419$

PMO6-81109: WRR factor=0.998577, $\sigma=0.000708, n=426$

PMO6-850410: WRR factor $=0.990890, \sigma=0.001145, n=434$

PMO6-CC0403: WRR factor $=1.000160, \sigma=0.000732, n=425$

PMO6850406: WRR factor $=1.000200, \sigma=0.000877, n=323$

PMO8-P01: WRR factor=0.994812, $\sigma=0.006959, n=497$

PMO811108: WRR factor=1.000660, $\sigma=0.000727, n=417$

SIAR-1A: WRR factor=1.002400, $\sigma=0.000997, n=440$

SIAR-2A: WRR factor=0.991696, $\sigma=0.000732, n=495$

SIAR-2B: WRR factor $=1.000290, \sigma=0.000668, n=427$

SIAR-2C: WRR factor=0.999839, $\sigma=0.001125, n=441$

TIM-WITNESS: WRR factor=0.997303, $\sigma=0.001417, n=278$

TM167502: WRR factor=0.999294, $\sigma=0.001024, n=454$

TMI67604: WRR factor=0.998226, $\sigma=0.001341, n=440$

TMI68018: WRR factor $=0.996804, \sigma=0.000642, n=415$

TM168025: WRR factor $=0.998613, \sigma=0.000920, n=436$

TMI69137: WRR factor=1.001750, $\sigma=0.000843, n=467$

Chapter 4 Auxiliary Data

4.1 Direct and Diffuse Irradiance

Direct (WRR) and diffuse irradiance (shaded K\&Z CM22 S/N 020059).

4.2 Meteorological Data

Meteorological parameters measured by the SwissMetNet Davos station of MeteoSwiss (adjacent to IPC-XI measuring field).

4.3 Airmass and Aerosol Optical Depth (AOD)

A four-channel Precision Filter Radiometer (PFR) was used to determine AOD.

4.4 Scattering parameters

Ångström exponents (α) from PFR AOD data. Scattering asymmetry, single scattering albedo (SSA), and water column $\left(\mathrm{H}_{2} \mathrm{O}\right)$ based on data from the AERONET Davos station. Ozon $\left(\mathrm{O}_{3}\right)$ measured by the WRC Brewer \#163.

4.5 Scattering phase functions

Scattering phase functions derived from AERONET inversions. These data were used to correct for the aureole effect in pyrheliometers with non-standard viewing geometries.

Chapter 5 Symposium

5.1 To Build and Share Knowledge

On cloudy, overcast, or rainy days when no measurements were possible the IPC-XI symposium and course on radiation measurement were held. Radiation experts from PMOD/WRC as well as may IPC-XI participants presented their work and/or national radiation infrastructure in order to share and build knowledge.

Over the three weeks, more than 30 talks and presentations were given, most of which are available for download on the IPC-XI ftp site ftp://ftp.pmodwrc.ch/stealth/ipc-xi.

5.2 Artistic Representation

During IPC-XI an art photographer was collecting photographic and video material for an art project in Bergen, Norway. Many of the photographs as well as a short movie are available on the IPC-XI ftp site ftp://ftp.pmodwrc.ch/stealth/ipc-xi/presentations/from ellen/.

Chapter 6 Supplementary Information
6.1 Addresses of Participants

Ihab Abboud
Environment Canada
Meteorological Service of Canada
P.O. Box 160

SOG 5EO Wilcox, SK
Canada
phone: 0013065466444
fax: 0013065466400
e-mail: Ihab.Abboud@ec.gc.ca
Mohamed Badrane
Meteo Maroc
51 Residence Aouzal 3
Avenue Ain Tawajtate
Bourgone Casablanca
Maroc
phone: 00212663629498
e-mail: mohamed.badrane@hotmail.com

Klaus Behrens
Deutscher Wetterdienst
Met. Obs. Lindenberg
Am Observatorium 12
15848 Tauche-OT Lindenberg
Germany
phone: 00493367760151
fax: 00493367760280
e-mail: klaus.behrens@dwd.de

Gerardo Carbajal Benítez
Servicio Meteorologico Naciona
25 de Mayo 658
1427 Buenos Aires
Argentina
phone: 00541151676767
e-mail: gcarbajal@smn.gov.ar

Miroslav Chmelik
Slovak Hydrometeorological Institute
Jeseniova 17
83315 Bratislava
Slovakia
phone: 00421527731097
e-mail: miroslav.chmelik@shmu.sk

Steven Dewitte

RMI
Department of Aerology
Ringlaan 3 Avenue Circulaire
1180 Bruxelles
Belgium
phone: 003223730624
fax: 003223746788
e-mail: Steven.Dewitte@oma.be

Bruce Forgan

Bureau of Meteorology
Atmosphere Watch Section, OEB
700 Collins St
Docklands 3008
Australia
phone: 0061396694111
fax: 0061396694736
e-mail: b.forgan@bom.gov.au

Akihito Akiyama
EKO Instruments Europe B.V.
Middelstegracht 87H
2312 TT Leiden
The Netherlands phone: 0031715141300

Sami Bali

R.M.I.

Ringlaan 3 Avenue Circulaire
1180 Uccle-Brussels
Belgium
phone: 003223730626
fax: 003223746788
e-mail: Sami.Bali@oma.be

Francesco J. Bernal Garcia
IDEAM
Carrera 10 20-30
Bogata D.C.
Colombia
phone: 00573002130286
e-mail: frabernal@ideam.gov.co

Thomas Carlund
Swedish Meteorological and
Hydrological Institut SMHI
Filkborgsvägen 1
60176 Norrköping
Sweden
phone: 0046114958229
e-mail: thomas.carlund@smhi.se

Alessandra Colli

Institute for Renewable Energy
EURAC research
Viale Druso 1
39100 Bolzano
Italy
phone: 00390471055630
fax: 00390471055699
e-mail: alessandra.colli@eurac.edu

Vivien S. Esquivel
Philippine Atmospheric, Geophys.
and Astron. Services
PAGASA
Quezon City
Philippines
phone: 00639275509
fax: 00633733420
e-mail: vivien.esquivel@yahoo.com
Luis Gonzalez
R.M.I.

Ringlaan 3 Avenue Circulaire
1180 Uccle-Brussels
Belgium

Anne Andersson
SP Technical Research Institut
Box 857
50115 Boras
Sweden
phone: 004633165403
fax: 004633165620
e-mail: anne.andersson@sp.se

Alexander Baskis
Israel Meteorological Service
P.O. Box 25

50250 Bet-Dagan
srael
phone: 0097239682144
fax: 0097239604854
e-mail: balex@ims.gov.il

Barbara Bogdanska
Institute of Meteorology
and Water Management
61, Podlesna Str.
448147 Warsaw
Poland
phone: 0048225694178
ax: 0048225694325
e-mail: Barbara.Bogdanska@imgw.pl

André Chevalier

RMI
Department of Aerology
Ringlaan 3 Avenue Circulaire
1180 Uccle-Brussels
Belgium
phone: 003223730602
fax: 003223746788
e-mail: a.chevalier@oma.be
Frederick Denn
NASA Langley
1 Enterprise Parkway
Hampton VA, 23693
USA
phone: 0017579511636
fax: 0017579511900
e-mail: frederick.m.denn@nasa.gov

Patrick Fishwick
Met Office
Fitzroy Road
Exeter, EX1 3PB
United Kingdom
phone: 00441392886289
fax: 00441392885681
e-mail: patrick.fishwick@metoffice.gov.uk

Luke Green
Met Office
Fitzroy Road
Exeter, EX1 3PB
United Kingdom
phone: 00441392886283
fax: 00441392885681
e-mail: luke.green@metoffice.gov.uk

David Halliwell
BSRN Observatory Site Scientist
Environment Canada
100 R-Y Trail, RM of Bratt's Lake
Wilcox, SK, S0G 5E0
Canada
phone: 0013063523818
fax: 0013065466400
e-mail: david.halliwell@ec.gc.ca

Gary Hodges
University of Colorado
325 Broadway Street
80501 Boulder
United States
e-mail: gary.hodges@noaa.gov

Somchit Janjai
Solar Energy Research Lab.
Silpakorn University
Muang - Nakhon Pathom 73000
Thailand

Thomas Kirk

The Eppley Laboratory Inc.
P.O. Box 419

02840-0419 Newport, Rhode Island
United States
phone: 0014018471020
e-mail: info@eppleylab.com

Greg Kopp

LASP
1234 Innovation Drive
Boulder, CO 80303
USA
phone: 0013037350934
e-mail: Greg.Kopp@LASP.Colorado.edu

Chang Lou

China Meteorological Administration
National Center for Meteo. Met
No.46, Zhongguancun Nandajie
100081 Beijing
China
phone: 0086057186783487
fax: 0086057186783487
e-mail: luochang@hzcnc.com
Pierre Malcorps
IRMB
3 Avenue Circulaire
1180 Brussels
Belgium
phone: 003223730601
fax: 003223746788

Karl Heuermann
LASP
1234 Innovation Drive
Boulder, CO 80303
USA

Kees Hoogendijk
EKO Instruments Europe B.V.
Middelstegracht 87H
2312 TT Leiden
The Netherlands
phone: 0031715141300
e-mail: hoogendijk@eko-eu.com

Ain Kallis
Estonian Meteor. \& Hydrological Institute
Toompuiestee 24
10149 Tallinn
Estonia
phone: 003727410136
fax: 003727410205
e-mail: ain.kallis@gmail.com

Wouter Knap

KNMI
P.O. Box 201

3730 AE De Bilt
The Netherlands
phone: 0031302206469
fax: 0031302210407
e-mail: knap@knmi.nl

Stefan Källberg

SP Technical Research Institut of Sweden Box 857
50115 Borås
Sweden
phone: 004633165626
fax: 004633165620
e-mail: stefan.kallberg@sp.se

Meena Lysko

CSIR
PO Box 395
Pretoria 1, Gauteng
South Africa
e-mail: mlysko@csir.co.za

Artur Maria Mandlate

National Inst. of Meteo Mozambique
Rua Mukumbura 164 maputo
Maputo 256
Mozambique
phone: 00258824277493
fax: 0025821491150
e-mail: artur_m@inam.gov.mz

John R. Hickey
The Eppley Laboratory Inc.
P.O. Box 419

02840-0419 Newport, Rhode Island
USA
phone: 0014018471020
fax: 0014018471031
e-mail: johnh@eppleylab.com

Osamu ljima
Japan Meteorological Agency
Radiation Section
1-3-4 Otemachi, Chiyoda-ku
Tokyo 100-8122
Japan
phone: 0081332128341
fax: 0081332114640
e-mail: ijima@met.kishou.go.jp

Jan-Erik Karlsson
Swedish Meteorological and
Hydrological Institut SMHI
Filkborgsvägen 1
60176 Norrköping
Sweden
phone: 00461115838
fax: 004611151707

Jorgen Konings
Hukseflux Thermal Sensors
Electronikaweg 25
2628 XG Delft
The Netherlands

Alexander Los
ECO INSTRUMENTS Europe B.V.
Direktor
Middelstegracht 87H
2312 TT Leiden
The Netherlands
phone: 0031715141300
fax: 0031715126222
e-mail: alexander.los@eko-eu.com

Martin Mair
ZAMG
Hohe Warte 38
1190 Wien
Österreich
phone: 00431360262706
fax: 0043360262720
e-mail: martin.mair@zamg.ac.at

tsara Masiri

Solar Energy Research Lab.
Silpakorn University
Muang - Nakhon Pathom 73000
Thailand
phone: 0066848841765
fax: 006634271189
e-mail: itsara@su.ac.th

Joop Mes
Kipp \& Zonen
Delftechpark 36
2628 XH Delft
The Netherlands
phone: 0031152755210
fax: 0031152620351
e-mail: joop.mes@kippzonen.com

Michael Milner
Bureau Of Meteorology
700 Collins Street
Docklands 3008
Australia
phone: 0061396694122
fax: 0061396694122
e-mail: m.milner@bom.gov.au

Pedro Mostraj
Dirección Meteorológica de Chile
Av. Diego Portales 3450
Estacion Central
Santiago
Chile
phone: 005624364549
fax: 005624364549
e-mail: pmostraj@meteochile.cl

Zoltán Nagy
Hungarian Meteorological Service
Measurement Techniques and
Methodology Division
1181 Budapest
Hungary
phone: 003613464855
fax: 003613464849
e-mail: nagy.z@met.hu
Ormanda Niebergall
Environment Canada
P.O Box 160

SOG 5E0 Wilcox, Saskatchewan
Canada
phone: 0013063523818
fax: 0013065466400
e-mail: Ormanda.Niebergall@ec.gc.ca

Jan Alse Olseth

University of Bergen
Geophysical Institute
5007 Bergen
Norway
phone: 004755582892
fax: 004797577829
e-mail: jan.asle.olseth@gfi.uib.no

Alexander Pavlov
Voeikov MGO
7, Karbyshev st.
194021 St. Petersburg

Russia

phone: 0078122974390
fax: 0078122478661
e-mail: etalon@main.mgo.rssi.ru

Joseph Michalsky
NOAA/OAR
325 Broadway R/GMD
Boulder, CO 80305-3337
USA
phone: 0013034976360
fax: 0013034976546
e-mail: joseph.michalsky@noaa.gov

Jean-Philippe Morel

Météo-France
Chef du Centre Radiomètrique
785 Chemin de l'Hermitage
84200 Carpentras - Serres
France
phone: 0033490636967
fax: 0033490636959
e-mail: jean-philippe.morel@meteo.fr

Sophie Mulaudzi
CSIR
P.O. Box 395

Pretoria 1, Gauteng
South Africa
e-mail: Sophie.Mulaudzi@univen.ac.za

Erik Naranen
Atlas Weathering/DSET Labs
45601 North 47th Ave.
85087 Phoenix, Arizona
USA
phone: 0016232011032
fax: 0016234659409
e-mail: enaranen@atlas-mts.com

Ifeanyi Daniel Nnodu
Nigerian Meteorological Agency
33 Pope John Paul Street
Maitama District
PMB 0615 Abuja
Nigeria
phone: 002348033339282
fax: 0023494130710
e-mail: idnnodu@yahoo.com

Cristian Oprea
National Institute of Meteorology and Hydrology
Sos. Bucuresti-Ploiesti 97
13686 Bucharest
Romania
phone: 0040213163116
fax: 0040213168862
e-mail: relatii@meteo.inmh.ro

Maria Pavlovich
VNIIOFI
46, Ozernaya Str.
Moscow 119361
Russia
phone: 0074954372992
fax: 0074954373700
e-mail: pavlovitch-m4@vniiofi.ru

Darius Mikalajunas
Lithuanian Hydromet. Service
Rudnios Str. 6
2600 Vilnius
Lithuania
phone: 0037060309478
fax: 0037052728874
e-mail: d.mikalajunas@meteo.lt

Svetlana Morozova
FGUP VNIIOFI
Ozernaya Str., 46
119361 Moscow

Russia

phone: 0070954373700
fax: 0070954373700
e-mail: morozova-m4@vniiofi.ru

Kolawole Salimon Muyiolu
Nigerian Meteorological Agency
33 Pope John Paul Street
Maitama District
PMB 0615 Abuja
Nigeria
phone: 002348053059787
fax: 0023494130710
e-mail: muyiolu_kolawole@yahoo.com

Donald W. Nelson
NOAA/CMDL
R/CMDL1
325 Broadway St.
Boulder, CO 80305
USA
phone: 0013034976662
fax: 0013034975590
e-mail: donald.w.nelson@noaa.gov

Yaseen Odan
Sudan Meteorological Authority
P.O.Box 574 Khartoum Sudan

1111 Khartoum
Sudan
phone: 002490912220246
fax: 00249183771693
e-mail: yaseen@ersad.gov.sd

Bouziane Ouchene
Météorologie Algérie
Boite postale 31
11000 El hofra, Tamanrasset
Algeria
phone: 0021329344673
fax: 0021329344226
e-mail: b_ouchene@yahoo.fr

Vladimir Pavlovich
VNIIOFI
46, Ozernaya Str.
Moscow 119361
Russia
phone: 0074954372992
fax: 0074954372992
e-mail: VLP.47@mail.ru

Jiri Pokorny
Czech Hydromet.I Institute
Husova 456
50008 Hradec Kralove
Czech Republic
phone: 00420495260352
e-mail: jiri.pokorny@ehmi.cz

Ibrahim Reda
Nat. Renewable Energy Laborat.
1617 Cole Boulevard
80401 Golden CO
USA
phone: 0013033846385
fax: 0013033846391
e-mail: ibrahim.reda@nrel.gov

Ellen Røed
Ovre Stadionveien 82
5161 Laksevag
Norway
phone: 004797549761
e-mail: ellen.roed@khib.no

Rajendra Kumar Sharma
Central Radiation Laboratory
Instrument Division
India Meteorological Department
411005 Pune, Maharashtra
India
phone: 00912025893415
fax: 00912025882353
e-mail: rajendra_radiation@yahoo.com
Thomas Stoffel
Nat. Renewable Energy Laboratory
Mail Stop 1612
1617 Cole Blvd.
Golden, CO 80401-3393
USA
phone: 0013033846395
fax: 0013033846391
e-mail: thomas.stoffel@nrel.gov

Cor van Oort
KNMI
PO Box 201
3730 AE De Bilt
The Netherlands
phone: 0031302206417
fax: 0031302210407
e-mail: oortvan@knmi.nl

Yu Peng Wang
CIOMP
Dong Nanhu Road 3888
No.46, Zhongguancun Nandajie
130033 Changchun, Jilin
China
phone: 0086043186708089
fax: 0086043186176883
e-mail: wangyu_peng@sina.com

Krunoslav Premec Jimei Quan
Meteorological Service
Gric 3
10000 Zagreb
Croatia
phone: 0038514565607
fax: 0038514852036
e-mail: krunoslav.premec@cirus.dhz.hr

David Riveros Rosas
nstituto de Geofisica
Cd. Universitaria \# 3000

4510 Mexico - Distrito Federal
Mexico
e-mail: driveros@geofisica.unam.mx

Isabelle Rüedi

WMO
7bis, avenue de la Paix
Case Postale 2300
1211 Geneve 2
Switzerland
phone: 0041227308278
fax: 0041227308021
e-mail: iruedi@wmo.int

Peter Sira

Kenya Meteorological Dept.
P.O.Box 30259-00100

100 Nairobi
Kenya
phone: 00254722845907
fax: 00254203876955
e-mail: mungaipn@engineer.com

Watcharapol Subwat
Thai Meteorological Department
4353 Sukhumvit Rd.
10260 Bangkok Banga District
Thailand

Kees van den Bos
Hukseflux Thermal Sensors
Electronikaweg 25
2628 XH Delft
The Netherlands
phone: 0031152142669
fax: 0031152574949
e-mail: info@hukseflux.com

Rungrat Wattan

Solar Energy Research Lab.
Silpakorn University
6 Rajamankha Nai Road
Muang - Nakhon Pathom 73000
Thailand
phone: 006634270761
fax: 006634271189
e-mail: rungrat@su.ac.th

China Meteorological Administration
National Center for Meteo. Met.
No.46, Zhongguancun Nandajie
100081 Beijing
China
phone: 008601068406936
fax: 0086010668406936
e-mail: quanjm@cma.gov.cn

Israel Rodriguez Outon
CIEMAT
Av. Complutense 22
28040 Madrid
Spain
phone: 0034914962509
fax: 0034913466037
e-mail: israel.rodriguez@ciemat.es

Tony Sample
European Commission DG JRC ISPRA
Institute for Env. and Sustainability
TP 450, Via Fermi 1
21020 Ispra Varese
Italy
phone: 00390332789062
fax: 00390332789268
e-mail: tony.sample@jrc.it

Ilja Staupe
Kipp \& Zonen
Delftechpark 36
2628 XG Delft
The Netherlands
phone: 0031152755210
fax: 0031152620351
e-mail: ilja.staupe@kippzonen.com

Szilvia Varga-Fogarasi
Hungarian Met. Service
Gilice tér 39.
1181 Budapest
Hungary
phone: 003613464853
fax: 003613464849
e-mail: fogarasi.sz@met.hu

Esequiel Villegas Paredes
SENAMHI-PERU
Jr. Cahuide 785, Jesus Maria
Lima 11
Peru
phone: 005116141414
fax: 005114717287
e-mail: evillegas@senamhi.gob.pe

Craig Webb
ACRF
309600 EW28
74630 Billings, Oklahoma
USA
phone: 0015803884053
fax: 0015803884052
e-mail: craigw@ops.sgp.arm.gov
Jim Wendell
NOAA/ESRL/GMD
325 Broadway
Boulder, CO 80305
USA
phone: 0013034976994
e-mail: jim.wendell@noaa.gov

Dong Jun Yang
CIOMP
Dong Nanhu Road 3888
No.46, Zhongguancun Nandajie
130033 Changchun, Jilin
China
phone: 0086 0431 86708089
fax: 086-0431-86176883
e-mail: djyang0827@163.com

Ed Worrell
EKO Instruments Europe B.V.
Middelstegracht 87H
2312 TT Leiden
The Netherlands phone: 0031715141300
fax: 0031715126222
e-mail: ed.worrell@eko-eu.com

Xin Ye

CIOMP
Dong Nanhu Road 3888
No.46, Zhongguancun Nandajie
130033 Changchun, Jilin
China
phone: 0086043186708089
fax: 0086043186176883 e-mail: newsyears@ustc.edu

Yun Yang
China Meteorological Administration National Center for Meteo. Met. No.46, Zhongguancun Nandajie 100081 Beijing

China

phone: 00861068406936
fax: 00861068400936
e-mail: yyaoc@cma.gov.cn
Willem J. Zaaiman
European Commission-DG JRC
Via Fermi, 2749
21020 Ispra Varese
Italy
phone: 00390332785750
fax: 00390332789268
e-mail: willem.zaaiman@jrc.ec.europa.eu

[^0]: ${ }^{1}$ The heater voltage was manually selected before each run to match the expected level of solar irradiance.

[^1]: ${ }^{1}$ Some operators assumed a vanishing zero signal. They did not perform zero readings.
 ${ }^{2}$ The WMO CIMO Guide (WMO-No. 8) definition for direct solar radiation explicitly includes an aureole component. As to the view-limiting geometry the CIMO Guide further recommends " $\left[.\right.$.] that the opening half-angle be 2.5° and the slope angle 1°. We therefore apply a correction to reduce the aureole effect to the recommended view-limiting geometry. For instruments which obey the CIMO recommendations this correction vanishes (c.f. Sect. 2.5).

[^2]: ${ }^{1}$ This threshold range ususally is ± 0.002 for cavity pyrheliometers. However, for most Ångströms, NIP's and some cavities a different range had to be chosen manually in order to make the most plausible selection of data points.

[^3]: ${ }^{2}$ Interestingly, the SDE effect is not very distinct in most Ångströms (c.f. Chap. 3.1). Probably because the area of sky at large angular distance from the sun is small in the elongated field-of-view. In other words, the it "radiationweighted" effective field-of-view of Ângströms might not be too different the CIMO recommendations. Because of the smallness of the SDE effect and the difficulties to reduce the rectangular to a circualar view-limiting geometry we did not apply the SDE correction to Ångströms. In the case of thermopile instruments (NIPs, CH1s etc.) their level of accuracy does not warrant to apply the correction.

