WMO International Pyrheliometer Comparison
IPC-XI
27 September - 15 October 2010
Davos, Switzerland

Final Report

Wolfgang Finsterle
Contents

1 Organization and Procedures 5
1.1 Introduction ... 5
1.2 Participation ... 5
1.3 Data Acquisition and Evaluation 10
 1.3.1 Timing of the Measurements 11
 1.3.2 Data Evaluation 12
 1.3.3 Auxiliary Data 13
1.4 Approval and Dissemination of the Results 13

2 Measurements and Results 15
2.1 Data Selection Criteria for the Final Evaluation 15
2.2 Computation of the New WRR Factors 15
 2.2.1 WSG Instruments 15
 2.2.2 Participating Instruments 16
2.3 Status of the WSG and Transfer of the WRR 16
2.4 External stability check of the WSG 20
2.5 Saharan Dust Event (SDE) 22

3 Conclusions and Recommendations 27
3.1 Graphical Representation of the Results 27

4 Auxiliary Data ... 71
4.1 Direct and Diffuse Irradiance 71
4.2 Meteorological Data 72
4.3 Airmass and Aerosol Optical Depth (AOD) 73
4.4 Scattering parameters 74
4.5 Scattering phase functions 75

5 Symposium ... 77
5.1 To Build and Share Knowledge 77
5.2 Artistic Representation 77

6 Supplementary Information 79
6.1 Addresses of Participants 79
Chapter 1 Organization and Procedures

1.1 Introduction

The 11th International Pyrheliometer Comparison (IPC-XI) was held together with Regional Pyrheliometer Comparisons (RPCs) of all WMO Regional Associations (RA I to RA IV) from 27 September through 15 October 2010 at the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC) in Davos, Switzerland.

The results presented in this report are based on the measurements carried out during the three weeks assigned to the IPC-XI. The favorable weather conditions allowed to acquire a large number of calibration points for most participating instruments. Cloudy and overcast days were used for technical preparations and training of participants as well as for a the IPC-XI symposium and Course on Radiation Measurement. A Saharan Dust Event (SDE) affected the measurements during several days starting October 8th. Analyzing the effect of the SDE on different types of instruments led to interesting findings which are summarized in dedicated section of this report.

1.2 Participation

Representatives from 17 Regional and 22 National Radiation Centers as well as 14 manufacturers and other institutions took part in the comparison. Additionally, two institutions who did not send a representative had their pyrheliometers operated by other participants, resulting in 88 participants operating 95 pyrheliometers from 42 countries. The six World Standard Group (WSG) and 24 additional pyrheliometers, including the new Cryogenic Solar Absolute Radiometer (CSAR), were operated by the WRC staff. A representative of WMO was attending during the first couple of days of IPC-XI.
Table 1.1: IPC-XI Participation: World, Regional and National Radiation Centers

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Institution</th>
<th>Operator(s)</th>
<th>Instrument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switzerland</td>
<td>WRC</td>
<td>Physikalisch-Meteorologisches Observatorium Davos/ World Radiation Center, Davos</td>
<td>W. Finsterle, A. Fehlmann, J. Gröbner, W. Schmutz, M. Suter, C. Thomann, C. Wehrli, R. Winkler (NPL)</td>
<td>PMO2, PMO5, CROM2L, PAC3, HF18748, MK67814, CIMEL, 0501657, 31144E6, DARA A, B, C, EPAC11402, CH1 970147, PMO6-0401, PMO6-79-122, PMO6-80022, AHF32455, CSAR, PMO6-0101, PMO6-0401, PMO6-0801, PMO6-0803, PMO6-0810, PMO6-0811, PMO6-0812, PMO6-0813, PMO6-0814, PMO6-0815, PMO6-0816, PMO8-P01, SIAR-2A, SIAR-2B</td>
</tr>
<tr>
<td>Algeria</td>
<td>RRC</td>
<td>Office National de Météorologie, Tamanrasset</td>
<td>B. Ouchene</td>
<td>HF 29225</td>
</tr>
<tr>
<td>Kenya</td>
<td>NRC</td>
<td>Kenya Meteorological Dept., Nairobi</td>
<td>P. Sira</td>
<td>Å13444</td>
</tr>
<tr>
<td>Morocco</td>
<td>NRC</td>
<td>Meteo Maroc, Casablanca</td>
<td>M. Badrane</td>
<td>CH1 080004</td>
</tr>
<tr>
<td>Mozambique</td>
<td>NRC</td>
<td>National Inst. of Meteo, Maputo</td>
<td>A. M. Mandlate</td>
<td>Å26835, CH1 950086, 31822E6</td>
</tr>
<tr>
<td>Country</td>
<td>Type</td>
<td>Institution</td>
<td>Operator(s)</td>
<td>Instrument(s)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>South Africa</td>
<td>NRC</td>
<td>CSIR, Pretoria, Gauteng</td>
<td>M. Lysko, S. Mulaudzi</td>
<td>AHF 31117</td>
</tr>
<tr>
<td>Sudan</td>
<td>NRC</td>
<td>Sudan Meteorological Authority, Karthoum</td>
<td>Y. Odan</td>
<td>NIP 28330</td>
</tr>
<tr>
<td>RA II</td>
<td>China</td>
<td>CMA, Beijing</td>
<td>Yang Yun, Quan Jimei, Luo Chang</td>
<td>PMO6-850406, AHF 36011</td>
</tr>
<tr>
<td>India</td>
<td>RRC</td>
<td>Central Radiation Laboratory, Pune, Maharashtra</td>
<td>R. J. Sharma</td>
<td>AHF 18742</td>
</tr>
<tr>
<td>Japan</td>
<td>RRC</td>
<td>JMA, Tokyo</td>
<td>O. Ijima</td>
<td>PMO6-0403, HF 32446</td>
</tr>
<tr>
<td>Philippines</td>
<td>NRC</td>
<td>Philippine Atmospheric, Geophys. and Astron. Services PAGASA, Diliman, Quezon City</td>
<td>V. Esquivel</td>
<td>Å12578</td>
</tr>
<tr>
<td>Thailand</td>
<td>NRC</td>
<td>Thai Meteorological Department, Bangkok</td>
<td>W. Subwat</td>
<td>HF 27796</td>
</tr>
<tr>
<td>RA III</td>
<td>Argentina</td>
<td>Servicio Meteorologico Nacional, Buenos Aires</td>
<td>G. Carbajal Benitez</td>
<td>AHF 29225</td>
</tr>
<tr>
<td>Chile</td>
<td>RRC</td>
<td>Dirección Meteorológica Chile, Santiago</td>
<td>P. Mostraj</td>
<td>PMO6-850410</td>
</tr>
<tr>
<td>Colombia</td>
<td>NRC</td>
<td>IDEAM, Bogotá</td>
<td>F. J., Bernal Garcia</td>
<td>PMO6-79-123</td>
</tr>
<tr>
<td>Peru</td>
<td>RRC</td>
<td>SENAMHI, Lima</td>
<td>E. Villegas</td>
<td>Å18020</td>
</tr>
<tr>
<td>RA IV</td>
<td>Canada</td>
<td>Environment Canada, Wilcox, Saskatchewan</td>
<td>O. Niebergall, D. Halliwell, I. Abboud</td>
<td>HF 18747, HF 20406, AHF 34320, AHF 34321</td>
</tr>
<tr>
<td>Mexico</td>
<td>RRC</td>
<td>Instituto de Geofisica, UNAM México</td>
<td>D. Riveros</td>
<td>HF 29223</td>
</tr>
<tr>
<td>Country</td>
<td>Type</td>
<td>Institution</td>
<td>Operator(s)</td>
<td>Instrument(s)</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>---</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>USA</td>
<td>RRC</td>
<td>NOAA/ESRL/GMD, Boulder</td>
<td>D. Nelson</td>
<td>HF 28553</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Michalsky</td>
<td>AHF 32448</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Wendell</td>
<td>AHF 30710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. Hodges</td>
<td>AHF 28553</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMI 67502</td>
</tr>
<tr>
<td>RA V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>RRC</td>
<td>Bureau of Meteorology, Melbourne</td>
<td>B. Forgan</td>
<td>HF 27160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. Milner</td>
<td>TMI 69137</td>
</tr>
<tr>
<td>RA VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>NRC</td>
<td>ZAMG, Vienna</td>
<td>M. Mair</td>
<td>TMI 68025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHP1 100245</td>
</tr>
<tr>
<td>Belgium</td>
<td>RRC</td>
<td>Royal Meteorological Institute, Uccle</td>
<td>A. Chevalier</td>
<td>CR09L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. Dewitte</td>
<td>CR09R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. Bali</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. Gonzales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. Malcorps</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>NRC</td>
<td>Meteorological and Hydrological Service, Zagreb</td>
<td>K. Premec</td>
<td>CH1 940072</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHP1 100288</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>NRC</td>
<td>Czech. Hydromet. Institute, Hradec Kralove</td>
<td>J. Pokorny</td>
<td>HF 30497</td>
</tr>
<tr>
<td>Estonia</td>
<td>NRC</td>
<td>Estonian MH Inst, Tallin</td>
<td>A. Kallis</td>
<td>PMO6-850405</td>
</tr>
<tr>
<td>France</td>
<td>RRC</td>
<td>Météo-France-Centre Radiométrique, Carpentras-Serres</td>
<td>J.-P. Morel</td>
<td>TMI 68016</td>
</tr>
<tr>
<td>Germany</td>
<td>RRC</td>
<td>DWD/MOL-RAO, Tauche -OT Lindenberg</td>
<td>K. Behrens</td>
<td>HF 27157</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PMO6-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PMO6-0405</td>
</tr>
<tr>
<td>Hungary</td>
<td>RRC</td>
<td>Hungarian Met. Service, Budapest</td>
<td>S. Varga-Fogarasi</td>
<td>HF 19746</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z. Nagy</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>NRC</td>
<td>Israel Meteorological Service, Bet-Dagan</td>
<td>A. Baskis</td>
<td>HF 27162</td>
</tr>
<tr>
<td>Lithuania</td>
<td>NRC</td>
<td>Lithuanian HMS, Vilnius</td>
<td>D. Mikalajunas</td>
<td>PMO6-0804</td>
</tr>
<tr>
<td>Norway</td>
<td>NRC</td>
<td>Geophys. Inst, Bergen</td>
<td>J. A. Olseth</td>
<td>EPAC 13617</td>
</tr>
<tr>
<td>Poland</td>
<td>NRC</td>
<td>Institute of Meteorology and Water Management, Warsaw</td>
<td>B. Bogdańska</td>
<td>HF 30716</td>
</tr>
<tr>
<td>Romania</td>
<td>NRC</td>
<td>National Meteorological Administration, Bucharest</td>
<td>C. Oprea</td>
<td>Å702</td>
</tr>
</tbody>
</table>
Table 1.1: (continued)

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Institution</th>
<th>Operator(s)</th>
<th>Instrument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>RRC</td>
<td>Voeikov MGO, St. Petersburg WRDC</td>
<td>A. Pavlov</td>
<td>Å212</td>
</tr>
<tr>
<td></td>
<td>WRDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>NRC</td>
<td>Slovak Hydrometeorological Institute, Bratislava</td>
<td>M. Chmelik</td>
<td>Å13439</td>
</tr>
<tr>
<td>Spain</td>
<td>NRC</td>
<td>CIEMAT, Madrid</td>
<td>I. Rodriguez Outon</td>
<td>AHF 28486</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PMO6-0301</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>RRC</td>
<td>SMHI, Norrköping</td>
<td>T. Carlund</td>
<td>PMO6-811108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J.-E. Karlsson</td>
<td>AWX 33393</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>NRC</td>
<td>KNMI, De Bilt</td>
<td>W. Knap</td>
<td>HF 27159</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. van Oort</td>
<td>CH1 020283</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>NRC</td>
<td>Met Office, Exeter, Devon</td>
<td>P. Fishwick</td>
<td>TMI 67604</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. Green</td>
<td>HF 31110</td>
</tr>
</tbody>
</table>

Table 1.2: IPC-XI Participation: Various Institutions and Manufacturers

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
<th>Participant(s)</th>
<th>Instrument(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>CIOMP, Changchun, Jilin</td>
<td>Yu Peng Wang</td>
<td>SIAR-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xin Ye</td>
<td>SIAR-2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dong Jun Yang</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>European Commission JRC, Ispra, Varese</td>
<td>W. Zaaiman</td>
<td>PMO6-811109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Sample</td>
<td>PMO6-911204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Colli</td>
<td>21451E6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25738E6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH1 060460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH1 930018</td>
</tr>
<tr>
<td>Russia</td>
<td>VNIIOFI, Moscow</td>
<td>S. Morozova</td>
<td>MAR-1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Pavlovich</td>
<td>MAR-1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. Pavlovich</td>
<td>MAR-1-3</td>
</tr>
<tr>
<td>Sweden</td>
<td>SP Swedish National Testing and Research Institute, Borås</td>
<td>S. Källberg</td>
<td>HF 15744</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Andersson</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>Solar Energy Research Lab., Silpakorn University, Muang, Nakhon Pathom</td>
<td>I. Masiri</td>
<td>AHF 32454</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Wattan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Somchit</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Institution</td>
<td>Participant(s)</td>
<td>Instrument(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>EKO Instruments Europe B.V., Leiden</td>
<td>A. Los</td>
<td>PMO6-850402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. Hoogendijk</td>
<td>M5S4-507122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Worrell</td>
<td>PMO6-0802 (for CRP Turnor, Luxembourg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Akihito</td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Huikseflux Thermal Sensors, Delft</td>
<td>K. van den Bos</td>
<td>DR018117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Konings</td>
<td>CP01P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CP01T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CP01U</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Kipp & Zonen BV, Delft</td>
<td>J. Mes</td>
<td>PMO6-cc 103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. Stauppe</td>
<td>CHI 940068</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHP1 REF1</td>
</tr>
<tr>
<td>USA</td>
<td>ACRF, Billings OK</td>
<td>C. Webb</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>ATLAS Weathering/DSET Laboratories, Phoenix AZ</td>
<td>E. Naranen</td>
<td>A HF 17142</td>
</tr>
<tr>
<td>USA</td>
<td>LASP, Boulder, CO</td>
<td>G. Kopp</td>
<td>TIM-Witness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. Heuermann</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>NASA Langley, Hampton VA</td>
<td>F. Denn</td>
<td>A HF 31041</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A HF 31105</td>
</tr>
<tr>
<td>USA</td>
<td>National Renewable Energy Lab., Golden CO</td>
<td>I. Reda</td>
<td>A HF 23734</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Stoffel</td>
<td>A HF 28968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A HF 29220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A HF 30713</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMI 68018</td>
</tr>
<tr>
<td>USA</td>
<td>The Eppley Laboratory Inc., Newport RI</td>
<td>J. R. Hickey</td>
<td>A HF 14915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Kirk</td>
<td>A HF 27798</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A HF 33396 (for AIST Japan)</td>
</tr>
</tbody>
</table>

1.3 Data Acquisition and Evaluation

The signals from the WSG instruments and additional WRC radiometers were acquired by a new data acquisition system based on 17 National Instruments PXI-4065 6.5-digit digital multimeters with NI PXI-2501 24-channel multiplexers. The system was controlled by a LabView application running on an industrial PC and operated flawlessly. The LabView application also triggered the timing signals as well as the initialization and readout of the data entry form for manually operated instruments.
Organization and Procedures Data Acquisition and Evaluation

(see below). The major operational advantage of this new system lies in the improved flexibility to add/remove instruments on the fly and to analyze data in near-real-time, allowing to quickly detect and fix potential problems with participating instruments, without loosing an entire day worth of measurements.

The participating instruments were operated with their standard pointing and data acquisition equipment, either manually or automated.

The data from the manually operated instruments were typed into a java based data entry form by the operator. WLAN connections were used to initialize the web interface and to dump its content to the central data acquisition computer at end of each measurement series. Participants could start the data entry form either on their own laptop computer or borrow one from the WRC. They were also required to keep written records as a backup copy of their data and to double-check for typing errors in the web interface.

The data from computer controlled instruments (synchronized to the timing of the IPC's measurement series) had to be written to ASCII files containing the instrument's serial number in the header and three columns for date, time, and irradiance, respectively. The ASCII files were then either uploaded to a dedicated directory on the IPC-XI FTP site or handed to the WRC staff on a USB memory stick. All data were ingested into the data acquisition and evaluation system at the end of each measurement day.

1.3.1 Timing of the Measurements

The measurements were taken in series of 21 minutes with a basic cadence of 90 seconds. Voice announcements and acoustic signals were used to inform the participants about the sequence of operation. All automated data acquisition systems were synchronized to Central European Time (CET). A network time server and a large reference clock on the measuring field were set up for this purpose. The time until the next measurement was also indicated on the web interface for manual operators. The timing for the different types of instrument was as follows:

- Ångström pyrheliometers: Before the start and after the end of the run the zero of the instrument was established. Alternating right and left strip readings were performed, starting with the right hand strip exposed to the sun. The following readings were paired as L-R, R-L, etc., yielding a total of 12 irradiance values per run.

- PAC3: the run started with the shutter closed, after 60 s the electrical heater\(^1\) was turned on for 40 s (this was introduced after IPC-III in order to have a well defined thermal state of the instrument independent of the operation sequence before the run). At 270 s the zero of the thermopile was read and the heater switched on for 180 seconds. At 450 s the heater voltage, current and thermopile were read, the heater turned off and the shutter opened. Starting at 540 s readings were taken every 90 s yielding 8 irradiance values per run. After the last reading the shutter was closed.

- HF- and TMI-type pyrheliometers: the run started with the shutter closed, after 90 s the thermopile zero was read and the electrical heater\(^1\) turned on until at 180 s the voltage, current and thermopile were read. The heater was then switched off and the shutter opened. From 270 s onward the thermopile signal was recorded every 90 s yielding 11 irradiance values per run. Some automated instruments performed the electrical calibration in between the series and/or read the irradiance every 30 seconds, consequently providing up to 39 irradiance values per run.

\(^1\)The heater voltage was manually selected before each run to match the expected level of solar irradiance.
• PMO-, SIAR- and CROM-type pyrheliometers: the run started with a reference phase (shutter closed) of 90 s, followed by a measurement phase (shutter open) of 90 s. This sequence was repeated for the next 18 minutes. A total of 6 open and 7 closed readings were taken yielding a total of 6 irradiance values during a run. PMO2 was read at twice that pace, with a reference phase of 45 s and a measurement phase of 45 s, producing 13 irradiance values per run so that for all readings of the basic sequence a PMO2 irradiance was available.

• Normal Incidence Pyrheliometers (NIP, CH1, etc.): These pyrheliometers recorded 12 irradiance values every 90 s after an initial zero reading at 90 seconds. Some instruments omitted the initial zero reading, thus yielding 13 irradiance readings.

• Other pyrheliometers: Prototype instruments such as the CSAR, DARA or TIM-Witness were using various modes of operation which are specific to their design. They all share the principle of electrical substitution and were synchronized to the 90-seconds base cadence.

1.3.2 Data Evaluation

For each instrument the irradiance was obtained with the appropriate evaluation procedure as listed below. After each day a graphical print-out of the ratios to PMO2 was put on display in the “Data Center” room to be reviewed by the participants. This simple but effective measure of quality control revealed instrumental problems in several cases which subsequently could be fixed quickly.

“Quick-look” print-outs were also produced during the day when an instrument was suspected to malfunction.

The procedure used to calculate the irradiance S of each instrument type is described below. The notations are:

- V_{th}: output of the thermopile
- U_h, U_i: voltage across the heater (h) or across the standard resistor (i)
- R_n: standard resistor
- C_1: calibration factor
- C_2: correction factor for lead heating
- P: electrical power in the active cavities

• Ångström-pyrheliometers: the current through the right or left strip was measured as voltage drop across a standard resistor and the irradiance was obtained as:

$$S = C_1 \frac{U_i \text{(left)} U_i \text{(right)}}{R_n^2}$$

This corresponds to the geometric mean of the irradiances at the time of right and left readings. Thus, the ratio to WRR was calculated using the geometric mean of the WSG irradiances at the corresponding instances.

• PAC3, HF, and TMI type pyrheliometers: the irradiance was calculated from the thermopile output V_{th} (irrad) when the receiver was irradiated. The sensitivity was determined by the calibration during which the cavity was shaded and electrically heated and U_h and U_i were measured together with the corresponding thermopile output V_{th} (cal). Furthermore, the zero of the thermopile V_{th} (zero) was measured and subtracted from all thermopile readings.

$$S = C_1 \frac{V_{th}\text{(irrad)} - V_{th}\text{(zero)}}{V_{th}\text{(cal)} - V_{th}\text{(zero)}} \frac{U_i}{R_n} \left(U_h - \frac{U_i}{R_n} C_2 \right)$$

• PMO-, SIAR- and CROM-type pyrheliometers: the irradiance was obtained from P (closed) averaged from the closed values before and after the open reading P (open).

$$S = C_1 (P\text{(closed)} - P\text{(open)})$$
The power calculation was done according to the prescription of the instrument type with

\[P = U_i^2 \quad \text{or} \quad P = U_i U_i \quad \text{or} \quad P = U_i \frac{U_i}{R_{in}} \]

The SIAR-type radiometers slightly deviate from this scheme in that they subtract the open power from the preceding closed power rather than the average of the preceding and successive closed readings.

- Normal Incidence Pyrheliometer (NIP, CH1, etc.): the thermopile reading was divided by the calibration factor after subtraction of the zero point reading\(^1\).
- PMO2: As during preceding IPCs, PMO2 was used as the reference instrument for the daily summaries because it can be operated fast enough to provide an irradiance value every 90 seconds. The values of PMO2 were obtained with the algorithm for PMO-type pyrheliometers. At the end of the open phase, 6 readings were taken in rapid succession within about two seconds. The standard deviation of the 6 readings was used during the final evaluation as a quality control parameter to assess the atmospheric stability during each acquisition sequence (see Sect. 2.1).

1.3.3 Auxiliary Data

The meteorological parameters (air temperature, relative humidity, atmospheric pressure) were obtained from the MeteoSwiss' automated weather station SwissMetNet located at PMOD/WRC (see Sect. 4.2). Wind speed and direction sensors were set up at the south and west corners of the measuring field as well as by the WSG tracker.

A cloud sensor flagged all data points when clouds were within 15 degrees of the Sun. The flagged points were not used to evaluate Ångstrom type pyrheliometers.

Precision Filter Radiometers (PFR) were used to determine Aerosol Optical Depth (AOD) at four wavelengths (367.6 nm, 412.0 nm, 501.2 nm, and 862.4 nm, see Sect. 4.3).

The measurements and inversion results (mainly scattering phase functions) from the Aerosol Robotic Network (AERONET) Davos station (located at PMOD/WRC) were used to correct for aureole effects (circumsolar radiation) in cavity pyrheliometers according to their view-limiting geometry\(^2\).

1.4 Approval and Dissemination of the Results

According to Resolution 1 of CIMO-XI an Ad-hoc Group was established to discuss the preliminary results of the IPC-XI, based upon criteria defined by the WRC, evaluate the above reference and recommend the updating of the calibration factors of the participating instruments. It was chaired by the Bruce W. Forgan, (Australia, RA V) and composed as follows: Kolawole Muyiulu (Nigeria, RA I), Meena Lysko (South Africa, RA I), Rajendra Sharma (India, RA II), Pedro Mostraj Aquilera (Chile, RA III), David Halliwell (Canada, RA IV), Don Nelson (USA, RA IV), Thomas Carlund (Sweden, RA VI), Martin Mair (Austria, RA VI), Krunoslav Premec (Croatia, RA VI). The WRC was represented by Wolfgang Finsterle.

The procedures used to compute the new WRR factors of the WSG and participating instruments are explained in Section 2.2.

\(^1\)Some operators assumed a vanishing zero signal. They did not perform zero readings.

\(^2\)The WMO CIMO Guide (WMO-No. 8) definition for direct solar radiation explicitly includes an aureole component. As to the view-limiting geometry the CIMO Guide further recommends "[...] that the opening half-angle be 2.5° and the slope angle 1°". We therefore apply a correction to reduce the aureole effect to the recommended view-limiting geometry. For instruments which obey the CIMO recommendations this correction vanishes (c.f. Sect. 2.5).
Chapter 2 Measurements and Results

Measurements were taken on 14 days (2010 September 28, October 2, 3, 4, and 6 - 15). October 8th and 12th were the most productive days, each yielding 17 series of 21 minutes duration. In total 164 series were acquired. All data from September 28th (1 series), October 2nd (10 series), 4th (3 series), and 6th (15 series) were rejected due to bad or unstable weather conditions on those days. Of the remaining days all data points that satisfy the following data selection criteria were considered in the final evaluation.

2.1 Data Selection Criteria for the Final Evaluation

The Ad-hoc Group responsible for the approval of the final evaluation procedure (c.f. Sect. 1.4) agreed on the following criteria for the acceptance of IPC-XI data:

1. Any series or part there-of were the field of view of Angstrom pyrheliometers is obscured by local topographic features (e.g. mountain sides) shall not be considered as valid data.

2. That no measurements be used for Angstrom pyrheliometers if a cloud is within 15 degrees of the sun. No measurements will be used for the absolute cavity radiometers (field of view = 5 degrees) if a cloud is within 8 degrees of the sun.

3. That no measurements be used if the wind speed is greater than 2.5 m/s.

4. That no data be used if the 500 nm AOD is greater than 0.120.

5. That an individual point be excluded from the series if the variation of the 8 fast PMO2 measurements is greater than 0.5 Wm$^{-2}$.

6. That a minimum of 150 acceptable data points be taken by PMO2 over a minimum of three days during the comparison period. 0.5 Wm$^{-2}$.

7. That the minimum number of acceptable data points be 150 for the PMO2 taken over a minimum of three days during the comparison period.

2.2 Computation of the New WRR Factors

2.2.1 WSG Instruments

The WRR factor $WRR_{i,IPC}$ for the WSG instrument i, $i \in \{\text{PMO2, CROM2L, MK67814, HF18748, PAC3, PMO5}\}$, by definition is the ratio of the WRR to the WSG instrument i averaged over the duration of the IPC:

$$WRR_{i,IPC-XI} = \left\{ \frac{WRR(t)}{WSG_i(t)} \right\}_t,$$

where $WRR(t)$ and $WSG_i(t)$ are the reference irradiance and the irradiance measured by WSG instrument i at the time t, and $\langle x(t) \rangle_t$ denotes the temporal average of $x(t)$. The reference irradiance (WRR) is defined as the mean value of the simultaneous readings of at least four WSG instruments, multiplied by their corresponding WRR factors from the previous IPC. Because the ratios of PAC3 and
Table 2.1: New WRR-factors for the WSG instruments computed using PMO2, PMO5, CROM2L, and MK67814 and the IPC-X WRR-factors.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>WRR factor</th>
<th>WRR factor</th>
<th>Standard Uncertainty</th>
<th># of points</th>
<th>Change [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPC-X</td>
<td>IPC-XI</td>
<td>(\frac{\sigma}{\sqrt{N-1}}) [ppm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMO2</td>
<td>0.998618</td>
<td>0.998623</td>
<td>29</td>
<td>554</td>
<td>5</td>
</tr>
<tr>
<td>PMO5</td>
<td>0.998962</td>
<td>0.999052</td>
<td>22</td>
<td>554</td>
<td>70</td>
</tr>
<tr>
<td>CROM2L</td>
<td>1.002998</td>
<td>1.003157</td>
<td>21</td>
<td>544</td>
<td>159</td>
</tr>
<tr>
<td>MK67814</td>
<td>1.000708</td>
<td>1.000458</td>
<td>21</td>
<td>497</td>
<td>-250</td>
</tr>
<tr>
<td>PAC3</td>
<td>1.001116</td>
<td>1.002117</td>
<td>26</td>
<td>381</td>
<td>1000</td>
</tr>
<tr>
<td>HF18748</td>
<td>0.996274</td>
<td>0.997138</td>
<td>26</td>
<td>493</td>
<td>867</td>
</tr>
</tbody>
</table>

HF18748 with respect to the WRR suffered from inexplicable jumps during the past five years these two instruments were not used to compute the reference irradiance during IPC-XI. With \(j \in \{\text{PMO2}, \text{CROM2L}, \text{MK67814}, \text{PMO5}\} \) we calculate the reference irradiance as

\[
WRR(t) = \langle WS_G_j(t) \ast WRR_{j,\text{IPC-XI}} \rangle_j.
\]

We thus get

\[
WRR_{i,\text{IPC-XI}} = \left\langle \frac{\langle WS_G_j(t) \ast WRR_{j,\text{IPC-XI}} \rangle_j}{WS_G_i(t)} \right\rangle_t,
\]

where \(i \in \{\text{PMO2}, \text{CROM2L}, \text{MK67814}, \text{HF18748, PAC3, PMO5}\} \) and \(j \in \{\text{PMO2}, \text{CROM2L}, \text{MK67814, PMO5}\} \).

2.2.2 Participating Instruments

For each participating instrument \(k \) the new WRR factor is calculated according to

\[
WRR_{k,\text{IPC-XI}} = \left\langle \frac{WRR(t)}{Irr_k(t)} \right\rangle_t,
\]

where \(Irr_k(t) \) is the irradiance measured by the instrument \(k \) at the time \(t \) and \(WRR(t) \) the constantaneous reference irradiance.

Temporal averaging is done by fitting a gaussian to the distribution of WRR-to-instrument ratios. Outliers are successively removed until the ratios are normally distributed with a probability higher than 90%, or until all ratios are within a certain range of their arithmetic mean value\(^1\).

The new WRR factors for the WSG and all participating instruments are listed in Table 2.2.

2.3 Status of the WSG and Transfer of the WRR

The main objective of the periodic IPC’s is the dissemination of the World Radiometric Reference (WRR) in order to ensure worldwide homogeneity of meteorological radiation measurements. The

\(^1\)This threshold range usually is ±0.002 for cavity pyrheliometers. However, for most Ångströms, NIP's and some cavities a different range had to be chosen manually in order to make the most plausible selection of data points.
Measurements and Results

Status of the WSG and Transfer of the WRR

WRR is realized by the WSG which is frequently inter-compared at PMOD/WRC to detect possible deviations of individual radiometers with respect to the group average and to ensure the stability of the WRR. In addition to this internal stability check the stability of the WRR is assessed during IPCs by comparing the WSG to other pyrheliometers that have participated in previous IPC's.

Since IPC-X, which was held in 2005, two member instruments of the WSG failed in internal stability checks. The instrument HF18748 suffered from several sensitivity drops of up to \(-0.1\%\). The sensitivity of PAC3 also dropped sharply by \(-0.05\%\) in summer 2011. Non-intrusive checks of both instruments did not reveal any contamination in their cavities.

The WRR factors of the remaining four WSG instruments (PMO2, PMO5, CROM2L, MK67814) changed by less than \(\pm 50\) ppm per year. These instruments are considered stable over the past five years and were used to calculate the new WRR.

Table 2.2: The new WRR factors for the participating instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>WRR Factor</th>
<th>(\sigma) [ppm]</th>
<th>(N) used</th>
<th>(N) tot</th>
<th>Country/Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>0601657</td>
<td>7.50000</td>
<td>0.000</td>
<td>1.014357</td>
<td>10310</td>
<td>551</td>
<td>4382</td>
<td>WRC</td>
</tr>
<tr>
<td>080002</td>
<td>9.62000</td>
<td>0.000</td>
<td>1.000254</td>
<td>1668</td>
<td>547</td>
<td>4382</td>
<td>Spain</td>
</tr>
<tr>
<td>080004</td>
<td>10.21000</td>
<td>0.000</td>
<td>1.007385</td>
<td>4436</td>
<td>417</td>
<td>1389</td>
<td>Morocco</td>
</tr>
<tr>
<td>080015</td>
<td>7.80000</td>
<td>0.000</td>
<td>0.997799</td>
<td>1675</td>
<td>554</td>
<td>4217</td>
<td>Spain</td>
</tr>
<tr>
<td>08004</td>
<td>5139.7</td>
<td>0.000</td>
<td>0.999914</td>
<td>645</td>
<td>364</td>
<td>696</td>
<td>Lithuania</td>
</tr>
<tr>
<td>090090</td>
<td>8.10000</td>
<td>0.000</td>
<td>1.003663</td>
<td>1187</td>
<td>554</td>
<td>4217</td>
<td>Spain</td>
</tr>
<tr>
<td>21451E6</td>
<td>8.42000</td>
<td>0.000</td>
<td>0.998843</td>
<td>6621</td>
<td>453</td>
<td>2719</td>
<td>JRC Italy</td>
</tr>
<tr>
<td>25738E6</td>
<td>7.92000</td>
<td>0.000</td>
<td>1.009038</td>
<td>5364</td>
<td>424</td>
<td>1549</td>
<td>Sudan</td>
</tr>
<tr>
<td>31144E6</td>
<td>8.04000</td>
<td>0.000</td>
<td>0.997184</td>
<td>5636</td>
<td>554</td>
<td>4382</td>
<td>WRC</td>
</tr>
<tr>
<td>79-122</td>
<td>600.000</td>
<td>0.000</td>
<td>1.003082</td>
<td>536</td>
<td>493</td>
<td>962</td>
<td>WRC</td>
</tr>
<tr>
<td>79-123</td>
<td>601.610</td>
<td>0.000</td>
<td>0.937200</td>
<td>638</td>
<td>540</td>
<td>982</td>
<td>Columbia</td>
</tr>
<tr>
<td>800022</td>
<td>597.875</td>
<td>0.000</td>
<td>1.001350</td>
<td>536</td>
<td>493</td>
<td>962</td>
<td>WRC</td>
</tr>
<tr>
<td>850402</td>
<td>24.0720</td>
<td>0.000</td>
<td>1.003330</td>
<td>1230</td>
<td>102</td>
<td>169</td>
<td>EKO The Netherlands</td>
</tr>
<tr>
<td>850406</td>
<td>24.1940</td>
<td>0.000</td>
<td>1.000565</td>
<td>1609</td>
<td>420</td>
<td>705</td>
<td>Estonia</td>
</tr>
<tr>
<td>850409</td>
<td>24.0780</td>
<td>0.000</td>
<td>1.004183</td>
<td>574</td>
<td>539</td>
<td>962</td>
<td>ESA/ESTEC The Netherlands</td>
</tr>
<tr>
<td>970147</td>
<td>11.1500</td>
<td>0.000</td>
<td>0.996057</td>
<td>1745</td>
<td>554</td>
<td>4382</td>
<td>WRC</td>
</tr>
<tr>
<td>A12578</td>
<td>4465.90</td>
<td>0.000</td>
<td>1.008580</td>
<td>4558</td>
<td>134</td>
<td>437</td>
<td>Philippines</td>
</tr>
<tr>
<td>A13439</td>
<td>4426.32</td>
<td>0.000</td>
<td>1.001350</td>
<td>1468</td>
<td>396</td>
<td>1208</td>
<td>Slovakia</td>
</tr>
<tr>
<td>A13444</td>
<td>6.21000</td>
<td>0.000</td>
<td>1.036795</td>
<td>3545</td>
<td>312</td>
<td>1172</td>
<td>Kenya</td>
</tr>
<tr>
<td>A18020</td>
<td>4647.26</td>
<td>0.000</td>
<td>1.002650</td>
<td>1468</td>
<td>323</td>
<td>905</td>
<td>Peru</td>
</tr>
<tr>
<td>A212</td>
<td>1055.60</td>
<td>0.000</td>
<td>0.996482</td>
<td>3117</td>
<td>258</td>
<td>616</td>
<td>Russia</td>
</tr>
<tr>
<td>A26839</td>
<td>8.11000</td>
<td>0.000</td>
<td>0.998769</td>
<td>4794</td>
<td>373</td>
<td>1209</td>
<td>Romania</td>
</tr>
<tr>
<td>AHF-AWX34320</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.992830</td>
<td>845</td>
<td>442</td>
<td>4774</td>
<td>Canada</td>
</tr>
<tr>
<td>AHF-AWX34321</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.994550</td>
<td>847</td>
<td>442</td>
<td>4774</td>
<td>Canada</td>
</tr>
<tr>
<td>AHF14915</td>
<td>2001.00</td>
<td>0.000</td>
<td>0.999682</td>
<td>920</td>
<td>392</td>
<td>5331</td>
<td>Eppley USA</td>
</tr>
<tr>
<td>AHF17142</td>
<td>1995.90</td>
<td>0.000</td>
<td>0.998358</td>
<td>909</td>
<td>397</td>
<td>4788</td>
<td>ATLAS-DSET USA</td>
</tr>
<tr>
<td>AHF18742</td>
<td>2006.93</td>
<td>0.066</td>
<td>1.002281</td>
<td>2277</td>
<td>361</td>
<td>1252</td>
<td>India</td>
</tr>
<tr>
<td>AHF23734</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.998281</td>
<td>660</td>
<td>412</td>
<td>5549</td>
<td>NREL USA</td>
</tr>
</tbody>
</table>

IPC-XI

17
Table 2.2: (continued)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>C_1</th>
<th>C_2</th>
<th>WRR Factor</th>
<th>σ [ppm]</th>
<th>N_{used}</th>
<th>N_{tot}</th>
<th>Country/Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHF27798</td>
<td>20020.0</td>
<td>0.000</td>
<td>0.999018</td>
<td>990</td>
<td>396</td>
<td>5331</td>
<td>Eppley USA</td>
</tr>
<tr>
<td>AHF28486</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.997308</td>
<td>674</td>
<td>422</td>
<td>4899</td>
<td>Spain</td>
</tr>
<tr>
<td>AHF28553</td>
<td>19986.0</td>
<td>0.000</td>
<td>0.996842</td>
<td>932</td>
<td>463</td>
<td>8223</td>
<td>NOAA USA</td>
</tr>
<tr>
<td>AHF28968</td>
<td>19980.2</td>
<td>0.000</td>
<td>0.997734</td>
<td>657</td>
<td>420</td>
<td>5549</td>
<td>NREL USA</td>
</tr>
<tr>
<td>AHF29220</td>
<td>19999.0</td>
<td>0.000</td>
<td>0.997691</td>
<td>670</td>
<td>418</td>
<td>5549</td>
<td>NREL USA</td>
</tr>
<tr>
<td>AHF29223</td>
<td>19998.0</td>
<td>0.066</td>
<td>0.997352</td>
<td>741</td>
<td>384</td>
<td>1458</td>
<td>Mexico</td>
</tr>
<tr>
<td>AHF30225</td>
<td>20004.2</td>
<td>0.000</td>
<td>0.996896</td>
<td>1029</td>
<td>336</td>
<td>1240</td>
<td>Algeria</td>
</tr>
<tr>
<td>AHF31110</td>
<td>19989.0</td>
<td>0.066</td>
<td>0.996431</td>
<td>629</td>
<td>399</td>
<td>1268</td>
<td>UK</td>
</tr>
<tr>
<td>AHF31117</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.998861</td>
<td>641</td>
<td>401</td>
<td>4091</td>
<td>South Africa</td>
</tr>
<tr>
<td>AHF32446</td>
<td>19986.9</td>
<td>0.000</td>
<td>1.00046</td>
<td>745</td>
<td>444</td>
<td>1694</td>
<td>Japan</td>
</tr>
<tr>
<td>AHF32455</td>
<td>20009.2</td>
<td>0.000</td>
<td>1.000276</td>
<td>595</td>
<td>401</td>
<td>6672</td>
<td>WRC</td>
</tr>
<tr>
<td>AHF33396</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.998079</td>
<td>926</td>
<td>396</td>
<td>5330</td>
<td>AIST Japan</td>
</tr>
<tr>
<td>AHF36011</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.996933</td>
<td>2198</td>
<td>367</td>
<td>1454</td>
<td>China</td>
</tr>
<tr>
<td>AHF36013</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.05815</td>
<td>2327</td>
<td>384</td>
<td>9430</td>
<td>Thailand</td>
</tr>
<tr>
<td>AWX31114</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.001244</td>
<td>891</td>
<td>462</td>
<td>8604</td>
<td>NOAA USA</td>
</tr>
<tr>
<td>AWX32448</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.999939</td>
<td>1149</td>
<td>465</td>
<td>8616</td>
<td>NOAA USA</td>
</tr>
<tr>
<td>AWX33393</td>
<td>2.00090</td>
<td>0.000</td>
<td>0.999362</td>
<td>819</td>
<td>427</td>
<td>5715</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH1020283</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.997677</td>
<td>1426</td>
<td>516</td>
<td>1776</td>
<td>KNMI The Nether-lands</td>
</tr>
<tr>
<td>CH1060460</td>
<td>10.0700</td>
<td>0.000</td>
<td>1.002334</td>
<td>2034</td>
<td>449</td>
<td>2759</td>
<td>JRC Italy</td>
</tr>
<tr>
<td>CH1930018</td>
<td>10.8500</td>
<td>0.000</td>
<td>1.000748</td>
<td>3256</td>
<td>453</td>
<td>2759</td>
<td>JRC Italy</td>
</tr>
<tr>
<td>CH1940068</td>
<td>10.3700</td>
<td>0.000</td>
<td>0.997717</td>
<td>955</td>
<td>147</td>
<td>1904</td>
<td>K&Z The Nether-lands</td>
</tr>
<tr>
<td>CH1940072</td>
<td>10330.0</td>
<td>0.000</td>
<td>1.007576</td>
<td>2507</td>
<td>439</td>
<td>4940</td>
<td>Croatia</td>
</tr>
<tr>
<td>CH1950086</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.005036</td>
<td>1316</td>
<td>329</td>
<td>5776</td>
<td>Mozambique</td>
</tr>
<tr>
<td>CHP100288</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.999634</td>
<td>1924</td>
<td>434</td>
<td>4940</td>
<td>Croatia</td>
</tr>
<tr>
<td>CHP1100245</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.000486</td>
<td>1413</td>
<td>449</td>
<td>5333</td>
<td>Austria</td>
</tr>
<tr>
<td>CHP1REF1</td>
<td>7.92000</td>
<td>0.000</td>
<td>0.997956</td>
<td>1900</td>
<td>179</td>
<td>2268</td>
<td>K&Z The Nether-lands</td>
</tr>
<tr>
<td>CP01P</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.021933</td>
<td>885</td>
<td>47</td>
<td>234</td>
<td>Hukseflux The Netherlands</td>
</tr>
<tr>
<td>CP01T</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.008928</td>
<td>629</td>
<td>47</td>
<td>286</td>
<td>Hukseflux The Netherlands</td>
</tr>
<tr>
<td>CP01U</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.018302</td>
<td>1772</td>
<td>49</td>
<td>286</td>
<td>Hukseflux The Netherlands</td>
</tr>
<tr>
<td>CR00L</td>
<td>12780.9</td>
<td>0.000</td>
<td>0.998363</td>
<td>882</td>
<td>220</td>
<td>407</td>
<td>Belgium</td>
</tr>
<tr>
<td>CRÖM2L</td>
<td>127.687</td>
<td>0.000</td>
<td>1.003157</td>
<td>449</td>
<td>544</td>
<td>892</td>
<td>WRC</td>
</tr>
<tr>
<td>CSAR</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.992123</td>
<td>519</td>
<td>28</td>
<td>2811</td>
<td>WRC</td>
</tr>
<tr>
<td>DARAAREFB</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.004210</td>
<td>843</td>
<td>143</td>
<td>1859</td>
<td>WRC</td>
</tr>
<tr>
<td>DARAAREFC</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.004358</td>
<td>1260</td>
<td>141</td>
<td>1278</td>
<td>WRC</td>
</tr>
</tbody>
</table>
Table 2.2: (continued)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>C_1</th>
<th>C_2</th>
<th>WRR Factor</th>
<th>σ [ppm]</th>
<th>N_{used}</th>
<th>N_{tot}</th>
<th>Country/Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARABREFC</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.006060</td>
<td>1330</td>
<td>214</td>
<td>2612</td>
<td>WRC</td>
</tr>
<tr>
<td>DARACREFB</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.004984</td>
<td>1161</td>
<td>143</td>
<td>1859</td>
<td>WRC</td>
</tr>
<tr>
<td>DR018117</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.029037</td>
<td>1550</td>
<td>49</td>
<td>286</td>
<td>Huksflux The Netherlands</td>
</tr>
<tr>
<td>EPAC11402</td>
<td>10024.0</td>
<td>0.000</td>
<td>1.000684</td>
<td>2017</td>
<td>145</td>
<td>5099</td>
<td>WRC</td>
</tr>
<tr>
<td>EPAC13617</td>
<td>10046.9</td>
<td>0.064</td>
<td>1.001243</td>
<td>1448</td>
<td>385</td>
<td>1187</td>
<td>Norway</td>
</tr>
<tr>
<td>HF15744</td>
<td>20020.0</td>
<td>0.000</td>
<td>0.998085</td>
<td>708</td>
<td>303</td>
<td>1117</td>
<td>Sweden</td>
</tr>
<tr>
<td>HF18747</td>
<td>19989.0</td>
<td>0.070</td>
<td>0.997138</td>
<td>571</td>
<td>493</td>
<td>5058</td>
<td>WRC</td>
</tr>
<tr>
<td>HF19746</td>
<td>20013.8</td>
<td>0.066</td>
<td>0.998886</td>
<td>811</td>
<td>262</td>
<td>718</td>
<td>Hungary</td>
</tr>
<tr>
<td>HF20406</td>
<td>20038.0</td>
<td>0.000</td>
<td>1.002435</td>
<td>869</td>
<td>477</td>
<td>5086</td>
<td>Canada</td>
</tr>
<tr>
<td>HF27157</td>
<td>20037.6</td>
<td>0.000</td>
<td>0.996647</td>
<td>1469</td>
<td>394</td>
<td>1172</td>
<td>Germany</td>
</tr>
<tr>
<td>HF27159</td>
<td>20030.0</td>
<td>0.000</td>
<td>1.000021</td>
<td>950</td>
<td>514</td>
<td>1797</td>
<td>KNMI The Netherlands</td>
</tr>
<tr>
<td>HF27160</td>
<td>20030.0</td>
<td>0.000</td>
<td>0.996467</td>
<td>780</td>
<td>468</td>
<td>4517</td>
<td>Australia</td>
</tr>
<tr>
<td>HF27162</td>
<td>20020.0</td>
<td>0.066</td>
<td>0.999212</td>
<td>1060</td>
<td>345</td>
<td>1049</td>
<td>Israel</td>
</tr>
<tr>
<td>HF27796</td>
<td>19966.1</td>
<td>0.066</td>
<td>0.997204</td>
<td>1112</td>
<td>473</td>
<td>1721</td>
<td>Thailand</td>
</tr>
<tr>
<td>HF30497</td>
<td>19943.8</td>
<td>0.000</td>
<td>0.995563</td>
<td>641</td>
<td>438</td>
<td>1126</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>MAR-1-2</td>
<td>35600.0</td>
<td>0.000</td>
<td>1.000116</td>
<td>1048</td>
<td>94</td>
<td>157</td>
<td>Russia</td>
</tr>
<tr>
<td>MAR-1-3</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.999991</td>
<td>884</td>
<td>92</td>
<td>179</td>
<td>Russia</td>
</tr>
<tr>
<td>MK67814</td>
<td>10007.0</td>
<td>0.000</td>
<td>1.000458</td>
<td>465</td>
<td>497</td>
<td>5102</td>
<td>WRC</td>
</tr>
<tr>
<td>MS54-507122</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.000303</td>
<td>1008</td>
<td>94</td>
<td>1009</td>
<td>EKO The Netherlands</td>
</tr>
<tr>
<td>NIP31822E6</td>
<td>1.00000</td>
<td>0.070</td>
<td>0.996873</td>
<td>5200</td>
<td>349</td>
<td>5776</td>
<td>Mozambique</td>
</tr>
<tr>
<td>PAC3</td>
<td>9002.60</td>
<td>0.000</td>
<td>1.002117</td>
<td>509</td>
<td>381</td>
<td>3242</td>
<td>WRC</td>
</tr>
<tr>
<td>PM02</td>
<td>600.163</td>
<td>0.000</td>
<td>0.998623</td>
<td>692</td>
<td>554</td>
<td>1136</td>
<td>WRC</td>
</tr>
<tr>
<td>PM05</td>
<td>2565.14</td>
<td>0.000</td>
<td>0.999052</td>
<td>528</td>
<td>554</td>
<td>982</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0101-CERNY-P5</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.005155</td>
<td>462</td>
<td>437</td>
<td>1406</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0101-CERNY-T</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.004938</td>
<td>502</td>
<td>486</td>
<td>7473</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0301</td>
<td>51161.5</td>
<td>0.000</td>
<td>1.00588</td>
<td>820</td>
<td>426</td>
<td>1126</td>
<td>Spain</td>
</tr>
<tr>
<td>PM06-0401D</td>
<td>5000.0</td>
<td>0.000</td>
<td>1.020979</td>
<td>477</td>
<td>312</td>
<td>1075</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0405</td>
<td>50926.8</td>
<td>0.000</td>
<td>0.999684</td>
<td>593</td>
<td>414</td>
<td>684</td>
<td>Germany</td>
</tr>
<tr>
<td>PM06-0801D</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.137201</td>
<td>1356</td>
<td>484</td>
<td>1514</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0802</td>
<td>5000.0</td>
<td>0.000</td>
<td>1.001435</td>
<td>34290</td>
<td>161</td>
<td>206</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>PM06-0803D</td>
<td>51221.0</td>
<td>0.000</td>
<td>1.000364</td>
<td>473</td>
<td>312</td>
<td>1077</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0801D</td>
<td>5000.0</td>
<td>0.000</td>
<td>1.018938</td>
<td>499</td>
<td>389</td>
<td>1392</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0811D</td>
<td>51037.6</td>
<td>0.000</td>
<td>1.000835</td>
<td>541</td>
<td>496</td>
<td>1481</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0812D</td>
<td>50642.6</td>
<td>0.000</td>
<td>1.004392</td>
<td>668</td>
<td>501</td>
<td>1484</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0814D</td>
<td>51084.6</td>
<td>0.000</td>
<td>1.002749</td>
<td>743</td>
<td>271</td>
<td>665</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0815D</td>
<td>50927.3</td>
<td>0.000</td>
<td>1.001582</td>
<td>548</td>
<td>458</td>
<td>1565</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-0816D</td>
<td>51022.2</td>
<td>0.000</td>
<td>1.015310</td>
<td>8442</td>
<td>242</td>
<td>594</td>
<td>WRC</td>
</tr>
<tr>
<td>PM06-5</td>
<td>50665.5</td>
<td>0.000</td>
<td>0.999116</td>
<td>725</td>
<td>419</td>
<td>690</td>
<td>Germany</td>
</tr>
<tr>
<td>PM06-81109</td>
<td>23.9995</td>
<td>0.000</td>
<td>0.998577</td>
<td>709</td>
<td>426</td>
<td>2758</td>
<td>JRC Italy</td>
</tr>
</tbody>
</table>
Table 2.2: (continued)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>C_1</th>
<th>C_2</th>
<th>WRR Factor</th>
<th>σ [ppm]</th>
<th>N_{used}</th>
<th>N_{tot}</th>
<th>Country/ Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMO6-850410</td>
<td>609.170</td>
<td>0.000</td>
<td>0.990890</td>
<td>1155</td>
<td>434</td>
<td>1558</td>
<td>Chile</td>
</tr>
<tr>
<td>PMO6-911204</td>
<td>24.1040</td>
<td>0.000</td>
<td>0.999711</td>
<td>1049</td>
<td>437</td>
<td>2758</td>
<td>JRC Italy</td>
</tr>
<tr>
<td>PMO6-CC0403</td>
<td>50489.5</td>
<td>0.000</td>
<td>1.000160</td>
<td>732</td>
<td>425</td>
<td>773</td>
<td>Japan</td>
</tr>
<tr>
<td>PMO6850406</td>
<td>24.0008</td>
<td>0.000</td>
<td>1.000198</td>
<td>876</td>
<td>323</td>
<td>664</td>
<td>China</td>
</tr>
<tr>
<td>PMO8-P01</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.994812</td>
<td>6995</td>
<td>497</td>
<td>982</td>
<td>WRC</td>
</tr>
<tr>
<td>PMO811108</td>
<td>24.1010</td>
<td>0.000</td>
<td>1.000657</td>
<td>727</td>
<td>417</td>
<td>1890</td>
<td>Sweden</td>
</tr>
<tr>
<td>SIAR-1A</td>
<td>23.6313</td>
<td>0.000</td>
<td>1.002401</td>
<td>994</td>
<td>440</td>
<td>1505</td>
<td>China</td>
</tr>
<tr>
<td>SIAR-2A</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.991696</td>
<td>737</td>
<td>495</td>
<td>2107</td>
<td>WRC</td>
</tr>
<tr>
<td>SIAR-2B</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.000286</td>
<td>668</td>
<td>427</td>
<td>2107</td>
<td>WRC</td>
</tr>
<tr>
<td>SIAR-2C</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.999839</td>
<td>1124</td>
<td>441</td>
<td>1505</td>
<td>China</td>
</tr>
<tr>
<td>TIM-WITNESS</td>
<td>1.00000</td>
<td>0.000</td>
<td>0.997303</td>
<td>1420</td>
<td>278</td>
<td>1114</td>
<td>LASP USA</td>
</tr>
<tr>
<td>TIM67502</td>
<td>1.00390</td>
<td>0.000</td>
<td>0.999294</td>
<td>1024</td>
<td>454</td>
<td>8145</td>
<td>NOAA USA</td>
</tr>
<tr>
<td>TIM67604</td>
<td>1.00520</td>
<td>0.000</td>
<td>0.998226</td>
<td>1343</td>
<td>440</td>
<td>1589</td>
<td>UK</td>
</tr>
<tr>
<td>TIM68016</td>
<td>10031.5</td>
<td>0.000</td>
<td>0.999858</td>
<td>758</td>
<td>462</td>
<td>4918</td>
<td>France</td>
</tr>
<tr>
<td>TIM68018</td>
<td>1.00460</td>
<td>0.000</td>
<td>0.996804</td>
<td>643</td>
<td>415</td>
<td>5549</td>
<td>NREL USA</td>
</tr>
<tr>
<td>TIM68025</td>
<td>1.00200</td>
<td>0.000</td>
<td>0.998613</td>
<td>921</td>
<td>436</td>
<td>5340</td>
<td>Austria</td>
</tr>
<tr>
<td>TIM68835</td>
<td>1.00000</td>
<td>0.000</td>
<td>1.000980</td>
<td>1049</td>
<td>436</td>
<td>4686</td>
<td>JRC Italy</td>
</tr>
<tr>
<td>TIM69137</td>
<td>10020.0</td>
<td>0.000</td>
<td>1.001752</td>
<td>841</td>
<td>467</td>
<td>4520</td>
<td>Australia</td>
</tr>
</tbody>
</table>

2.4 External stability check of the WSG

In Section 2.3 the stability of the WSG was checked by analyzing the trends of individual members of the WSG with respect to the group’s average. Here we present an external assessment of the stability of the WSG with respect to all cavity radiometers which have participated in at least two IPCs since 1980 (c.f. Fig. 2.1). This analysis confirms the long-term stability of the WSG within the required uncertainty level of 0.3%. Compared to last IPC (IPC-X, 2005) the WRR factors of HF-type instruments changed by -151 ppm on average. For the “SlowRad” instruments the apparent change is $+316$ ppm. The statistical uncertainties (1-σ) of these averages are 340 ppm (HF) and 960 ppm ("SlowRad"), respectively. We thus conclude that the WSG has not significantly drifted over the past five years. For completeness the history of WRR factors since 1980 (IPC-V) is given in Table 2.3 for all participating instruments. Note that in this table the raw WRR factors are listed while normalized factors were used for assessing the stability of the WSG. Normalization was necessary because some instruments used different calibration factors at different times, which produces spurious changes in their WRR factors.

Table 2.3: The history of WRR factors. In this table the raw factors are listed. They depend on the calibration constant which was used which may have changed with time. In the WSG-stability analysis presented in Section 2.4 and Figure 2.1 these factors were re-normalized accordingly.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>IPC-V</th>
<th>IPC-VI</th>
<th>IPC-VII</th>
<th>IPC-VIII</th>
<th>IPC-IX</th>
<th>IPC-X</th>
<th>IPC-XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A212</td>
<td>1.019121</td>
<td>0.999320</td>
<td>1.001542</td>
<td>1.001750</td>
<td>1.000560</td>
<td>1.003381</td>
<td>0.996482</td>
</tr>
</tbody>
</table>
Measurements and Results

<table>
<thead>
<tr>
<th>External stability check of the WSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A576</td>
</tr>
<tr>
<td>A702</td>
</tr>
<tr>
<td>A12578</td>
</tr>
<tr>
<td>A13439</td>
</tr>
<tr>
<td>A13444</td>
</tr>
<tr>
<td>A18020</td>
</tr>
<tr>
<td>CH1940072</td>
</tr>
<tr>
<td>EP A C11402</td>
</tr>
<tr>
<td>EP A C13617</td>
</tr>
<tr>
<td>HF15744</td>
</tr>
<tr>
<td>HF17159</td>
</tr>
<tr>
<td>HF17162</td>
</tr>
<tr>
<td>HF18747</td>
</tr>
<tr>
<td>HF19746</td>
</tr>
<tr>
<td>HF20406</td>
</tr>
<tr>
<td>HF21574</td>
</tr>
<tr>
<td>HF27159</td>
</tr>
<tr>
<td>HF27162</td>
</tr>
<tr>
<td>HF27796</td>
</tr>
<tr>
<td>HF29223</td>
</tr>
<tr>
<td>AHF14915</td>
</tr>
<tr>
<td>AHF17142</td>
</tr>
<tr>
<td>AHF18742</td>
</tr>
<tr>
<td>AHF21670</td>
</tr>
<tr>
<td>AHF21798</td>
</tr>
<tr>
<td>AHF22853</td>
</tr>
<tr>
<td>AHF22896</td>
</tr>
<tr>
<td>AHF29220</td>
</tr>
<tr>
<td>AHF29225</td>
</tr>
<tr>
<td>AHF30497</td>
</tr>
<tr>
<td>AHF30713</td>
</tr>
<tr>
<td>AHF30716</td>
</tr>
<tr>
<td>AHF31041</td>
</tr>
<tr>
<td>AHF31105</td>
</tr>
<tr>
<td>AHF33396</td>
</tr>
<tr>
<td>AHF33397</td>
</tr>
<tr>
<td>TM67502</td>
</tr>
<tr>
<td>TM67604</td>
</tr>
<tr>
<td>TM68016</td>
</tr>
<tr>
<td>TM68018</td>
</tr>
<tr>
<td>TM68025</td>
</tr>
<tr>
<td>TM69137</td>
</tr>
<tr>
<td>MAR-1-2</td>
</tr>
<tr>
<td>CR0M9L</td>
</tr>
</tbody>
</table>
2.5 Saharan Dust Event (SDE)

During the night of October 7th/8th a dust cloud from the Sahara desert has been transported over Switzerland by high-altitude winds. The appearance of the dust particles is reflected in an excess of large particles (> 1 μm) in the AERONET inversion results on the corresponding days (c.f. Fig. 2.2). The particle distribution significantly affects the scattering phase function (scattering angle) and thus changes the aureole radiation. Instruments with different view-limiting geometries see either more or less of this change. We use the view-limiting geometries from Table 2.4 together with the scattering phase functions (see Sect. 4.5), the Aerosol Optical Depth (AOD, see Sect. 4.3), and other scattering parameters (Sect. 4.4) to calculate the aureole correction with SMARTS (Gueymard, C. A., Solar Energy, 71(5), 2001) depending on the view-limiting geometry of each type of cavity radiometer.

The aureole correction is calculated with respect to the view-limiting geometry recommended by the CIMO Guide. Hence, all HF- and PMO6-type radiometers which follow the CIMO recommendations very closely do not need this correction, although we applied it for sake of consistency. On the other hand, on October 8th the correction can be as large as −0.2% in the case of the SIAR. Also PMO2 and PMO5 require large corrections of −500 ppm and +600 ppm, respectively.

The correction factors for the WSG are plotted in Figure 2.3.

2 Interestingly, the SDE effect is not very distinct in most Ångströms (c.f. Chap. 3.1). Probably because the area of sky at large angular distance from the sun is small in the elongated field-of-view. In other words, the “radiation-weighted” effective field-of-view of Ångströms might not be too different the CIMO recommendations. Because of the smallness of the SDE effect and the difficulties to reduce the rectangular to a circular view-limiting geometry we did not apply the SDE correction to Ångströms. In the case of thermopile instruments (NIPs, CH1s etc.) their level of accuracy does not warrant to apply the correction.
Figure 2.1: The historic development of the WRR factors of all cavity radiometers which have participated in at least two IPC’s since 1980 (IPC-V). The top panel shows how the WRR factors of HF-type pyrheliometers (including PAC, EPAC, and TMI) changed between consecutive IPCs since 1980 (IPC-V). The same is shown on the bottom panel for “SlowRad”-type radiometers, i.e. radiometers with alternating open/closed measurements. Note that in this analysis all WRR factors are normalized to the calibration constant which was used at the time.
Figure 2.2: The size distribution of aerosol particles measured by the AERONET Davos station on October 7th (top panel) and 8th (bottom panel). The excess in large particles (> 1µm) gradually normalizes during the following week. The size distribution significantly affects the scattering phase function and thus the aureole radiation.
Figure 2.3: The aureole correction before and during the Saharan dust event depending on type of instrument. The correction was applied to all cavity instruments. In the top panel the symbols for HF/AHF are hidden behind MK/TMI, CROM, and EPAC. (Calculations and graphics by André Fehlmann.)
Table 2.4: The view-limiting geometries for each type of instrument (all dimensions in mm).

<table>
<thead>
<tr>
<th>Instrument (Type)</th>
<th>front aperture radius</th>
<th>rear aperture radius</th>
<th>distance between apertures</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM02</td>
<td>3.6</td>
<td>2.5</td>
<td>75.0</td>
</tr>
<tr>
<td>PM05</td>
<td>3.7</td>
<td>2.5</td>
<td>95.4</td>
</tr>
<tr>
<td>PM06</td>
<td>4.2</td>
<td>2.5</td>
<td>98.5</td>
</tr>
<tr>
<td>PAC3</td>
<td>8.18</td>
<td>5.64</td>
<td>190.5</td>
</tr>
<tr>
<td>CR0M2L</td>
<td>6.29</td>
<td>5.0</td>
<td>144.05</td>
</tr>
<tr>
<td>HF</td>
<td>5.81</td>
<td>3.99</td>
<td>134.7</td>
</tr>
<tr>
<td>TMI</td>
<td>8.2</td>
<td>5.56</td>
<td>187.6</td>
</tr>
<tr>
<td>SIAR</td>
<td>5.7</td>
<td>4.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Chapter 3 Conclusions and Recommendations

Despite the partial failure of two WSG instruments (PAC3 and HF18748, c.f. Sect. 2.4) the WRR is considered stable within the limits required by the WMO-CIMO Guide. The new WRR factors are calculated based on the average readings of PMO2, PMO5, CROM2L, and MK67814. Compared to IPC-X most participating instruments show insignificant changes in their WRR factors, which confirms the stability of the WRR. The recommended WRR factors are listed in Table 2.2.

The flexibility offered by the new data acquisition system allowed for quick response in case of suspected problems with individual instruments. In several cases small stability issues of participating instruments could be identified and fixed with only minimal loss of observing time.

The Saharan Dust Event (SDE) which affected the measurements from October 8th through 13th revealed the susceptibility of direct solar irradiance measurements to atmospheric conditions and emphasized the importance to follow the recommendations concerning view-limiting geometry. While it was possible to compensate for the geometry-induced SDE effect the required auxiliary data (AOD, scattering phase function) and sophisticated models are not normally available at field sites. We thus strongly recommend the use of pyrheliometers which obey the CIMO recommendations for view-limiting geometry.

3.1 Graphical Representation of the Results

On the following pages are the data plots for each instrument. The deviation from WRR is plotted in percents. All the points which were used for the analysis (i.e., the points fulfilling the selection criteria listed in Sect. 2.1) have been plotted with a corresponding histogram on the side.
Graphical Representation of the Results

Conclusions and Recommendations

0501657: WRR factor=1.014360, σ=0.010459, n=551

080002: WRR factor=1.000250, σ=0.001669, n=547

080004: WRR factor=1.007380, σ=0.004469, n=417
Conclusions and Recommendations

Graphical Representation of the Results

080015: WRR factor=0.997799, $\sigma=0.001671$, n=554

0804: WRR factor=0.999914, $\sigma=0.000645$, n=364

090090: WRR factor=1.003660, $\sigma=0.001191$, n=554
Graphical Representation of the Results

Conclusions and Recommendations

- **21451E6**: WRR factor = 0.999193, $\sigma = 0.007685$, $n = 453$
- **25738E6**: WRR factor = 0.998843, $\sigma = 0.006614$, $n = 453$
- **28335**: WRR factor = 1.009040, $\sigma = 0.005413$, $n = 424$
Conclusions and Recommendations

Graphical Representation of the Results

31144E6: WRR factor=0.997184, σ=0.005621, n=554

79-122: WRR factor=0.999401, σ=0.000638, n=540

79-123: WRR factor=0.937200, σ=0.005746, n=344
Graphical Representation of the Results

Conclusions and Recommendations

80022: WRR factor=1.003080, σ=0.000541, n=493

850402: WRR factor=1.003287, σ=0.001234, n=102

850405: WRR factor=1.000560, σ=0.001610, n=420
Conclusions and Recommendations

Graphical Representation of the Results

850409: WRR factor=1.004180, σ=0.000576, n=539

970147: WRR factor=0.996057, σ=0.001739, n=554

A12578: WRR factor=1.008580, σ=0.004598, n=134
A13439: WRR factor=1.001350, σ =0.001471, n=396

A13444: WRR factor=1.036800, σ =0.003676, n=312

A18020: WRR factor=1.002650, σ =0.001472, n=323

Graphical Representation of the Results

Conclusions and Recommendations
Conclusions and Recommendations

Graphical Representation of the Results

A212: WRR factor=0.996482, σ=0.003106, n=258

A26839: WRR factor=1.007550, σ=0.002085, n=361

A576: WRR factor=0.990369, σ=0.003963, n=382
Graphical Representation of the Results

Conclusions and Recommendations

A702: WRR factor=0.998769, $\sigma=0.004789$, n=373

AHF-AWX34320: WRR factor=0.992830, $\sigma=0.000839$, n=442

AHF-AWX34321: WRR factor=0.994550, $\sigma=0.000843$, n=442
Conclusions and Recommendations

Graphical Representation of the Results

AHF14915: WRR factor=0.999682, σ=0.000920, n=392

AHF17142: WRR factor=0.998358, σ=0.000908, n=397

AHF18742: WRR factor=1.002280, σ=0.002283, n=361
Graphical Representation of the Results

Conclusions and Recommendations

AHF23734: WRR factor = 0.998281, $\sigma = 0.000659$, n = 412

AHF27798: WRR factor = 0.999018, $\sigma = 0.000989$, n = 395

AHF28486: WRR factor = 0.997308, $\sigma = 0.000672$, n = 422
Graphical Representation of the Results

Conclusions and Recommendations

AHF29223: WRR factor=0.997352, \(\sigma = 0.000739 \), n=384

AHF29225: WRR factor=0.996896, \(\sigma = 0.001026 \), n=336

AHF30112: WRR factor=1.011730, \(\sigma = 0.001995 \), n=74
Conclusions and Recommendations

Graphical Representation of the Results

AHF30713: WRR factor=0.997548, σ =0.000679, n=421

AHF30716: WRR factor=0.997136, σ =0.000656, n=360

AHF31041: WRR factor=0.996286, σ =0.000699, n=441
Conclusions and Recommendations

Graphical Representation of the Results

AHF32446: WRR factor = 1.000050, \(\sigma = 0.000745 \), \(n = 444 \)

AHF32455: WRR factor = 1.000280, \(\sigma = 0.000596 \), \(n = 401 \)

AHF33396: WRR factor = 0.998079, \(\sigma = 0.000924 \), \(n = 396 \)
AHF36011: WRR factor=0.996933, σ =0.002191, n=367

AHF36013: WRR factor=1.058110, σ =0.002462, n=384

AWX31114: WRR factor=1.001240, σ =0.000893, n=462
Conclusions and Recommendations

Graphical Representation of the Results

AWX32448: WRR factor=0.999939, $\sigma=0.001149$, $n=465$

AWX33393: WRR factor=0.999362, $\sigma=0.000819$, $n=427$

CH1020283: WRR factor=0.997677, $\sigma=0.001423$, $n=516$
Graphical Representation of the Results

Conclusions and Recommendations

CH1060460: WRR factor = 1.002330, \(\sigma = 0.002039 \), \(n = 449 \)

CH1930018: WRR factor = 1.000750, \(\sigma = 0.003259 \), \(n = 453 \)

CH1940068: WRR factor = 0.997717, \(\sigma = 0.000954 \), \(n = 147 \)
Conclusions and Recommendations

Graphical Representation of the Results

CH1940072: WRR factor = 1.007580, σ = 0.002526, n = 439

CH1950086: WRR factor = 1.005040, σ = 0.001323, n = 329

CHP100288: WRR factor = 0.999634, σ = 0.001924, n = 434

IPC-XI 47
Graphical Representation of the Results

Conclusions and Recommendations

CHP1100245: WRR factor=1.000490, $\sigma =0.001414$, $n=449$

CHP1REF1: WRR factor=0.997956, $\sigma =0.001897$, $n=179$

CP01P: WRR factor=1.021933, $\sigma =0.000905$, $n=47$
Conclusions and Recommendations

Graphical Representation of the Results

CP01T: WRR factor = 1.008928, \(\sigma = 0.000635 \), n = 47

CP01U: WRR factor = 1.018302, \(\sigma = 0.001805 \), n = 49

CR09L: WRR factor = 0.998363, \(\sigma = 0.000881 \), n = 220
CROM2L: WRR factor = 1.003166, \(\sigma = 0.000451\), n = 544

CSAR: WRR factor = 0.992123, \(\sigma = 0.000515\), n = 28

DARAAREFB: WRR factor = 1.004210, \(\sigma = 0.000847\), n = 143
Conclusions and Recommendations

Graphical Representation of the Results

DARAAREFC: WRR factor = 1.004358, \(\sigma = 0.001266 \), \(n = 141 \)

DARABREFC: WRR factor = 1.006060, \(\sigma = 0.001339 \), \(n = 214 \)

DARACREFB: WRR factor = 1.004984, \(\sigma = 0.001168 \), \(n = 143 \)
Conclusions and Recommendations

Graphical Representation of the Results

HF15744: WRR factor=0.998085, σ=0.000707, n=303

HF18747: WRR factor=1.001870, σ=0.000731, n=483

HF18748: WRR factor=0.997230, σ=0.000569, n=493
Graphical Representation of the Results

Conclusions and Recommendations
Conclusions and Recommendations

Graphical Representation of the Results

HF27159: WRR factor = 1.000020, $\sigma = 0.000950$, $n = 514$

HF27160: WRR factor = 0.996467, $\sigma = 0.000777$, $n = 468$

HF27162: WRR factor = 0.999212, $\sigma = 0.001049$, $n = 345$
Graphical Representation of the Results

Conclusions and Recommendations
Conclusions and Recommendations

Graphical Representation of the Results

MAR-1-3: WRR factor=0.999991, \(\sigma =0.000884 \), n= 92

MK67814: WRR factor=1.000450, \(\sigma =0.000466 \), n=497

MS54-S07122: WRR factor=1.003000, \(\sigma =0.001012 \), n= 94
Graphical Representation of the Results

Conclusions and Recommendations

\[NIP31822E6: \text{WRR factor}=0.996873, \sigma=0.005184, n=349 \]

\[PAC3: \text{WRR factor}=1.002195, \sigma=0.000510, n=381 \]

\[PMO2: \text{WRR factor}=0.998604, \sigma=0.000691, n=554 \]
Conclusions and Recommendations

Graphical Representation of the Results

PMO5: WRR factor=0.999044, \(\sigma =0.000528 \), n=554

![Graph for PMO5](image1)

PMO6-0101-CERNY-PS: WRR factor=1.005155, \(\sigma =0.000465 \), n=437

![Graph for PMO6-0101-CERNY-PS](image2)

PMO6-0101-CERNY-T: WRR factor=1.004938, \(\sigma =0.000505 \), n=486

![Graph for PMO6-0101-CERNY-T](image3)
Graphical Representation of the Results

PMO6-0301: WRR factor=1.000588, σ=0.000821, n=426

PMO6-0401D: WRR factor=1.020980, σ=0.000488, n=312

PMO6-0405: WRR factor=0.999684, σ=0.000594, n=414
Conclusions and Recommendations

Graphical Representation of the Results

PMO6-0801D: WRR factor=1.137201, \(\sigma =0.001542, n=484 \)

PMO6-0802: WRR factor=1.001435, \(\sigma =0.034318, n=161 \)

PMO6-0803D: WRR factor=1.000364, \(\sigma =0.000473, n=312 \)
Graphical Representation of the Results

PMO6-0810D: WRR factor=1.018938, σ=0.000509, n=389

PMO6-0811D: WRR factor=1.000835, σ=0.000542, n=496

PMO6-0812D: WRR factor=1.004392, σ=0.000671, n=501

Conclusions and Recommendations
Conclusions and Recommendations

Graphical Representation of the Results

PMO6-0814D: WRR factor=1.002749, \(\sigma =0.000745 \), \(n=271 \)

PMO6-0815D: WRR factor=1.001582, \(\sigma =0.000549 \), \(n=458 \)

PMO6-0816D: WRR factor=1.015310, \(\sigma =0.008572 \), \(n=242 \)
Graphical Representation of the Results

Conclusions and Recommendations

PMO6-5: WRR factor=0.999116, σ=0.000725, n=419

PMO6-81109: WRR factor=0.998577, σ=0.000708, n=426

PMO6-850410: WRR factor=0.990890, σ=0.001145, n=434
Conclusions and Recommendations

Graphical Representation of the Results

PMO6-911204: WRR factor=0.999711, σ=0.001049, n=437

PMO6-CC0403: WRR factor=1.000160, σ=0.000732, n=425

PMO6850406: WRR factor=1.000200, σ=0.000877, n=323
Graphical Representation of the Results

PMO8-P01: WRR factor = 0.994812, σ = 0.006959, n = 497

PMO811108: WRR factor = 1.000660, σ = 0.000727, n = 417

SIAR-1A: WRR factor = 1.002400, σ = 0.000997, n = 440

Conclusions and Recommendations
Conclusions and Recommendations

Graphical Representation of the Results

SIAR-2A: WRR factor=0.991696, $\sigma=0.000732$, $n=495$

SIAR-2B: WRR factor=1.000290, $\sigma=0.000668$, $n=427$

SIAR-2C: WRR factor=0.999839, $\sigma=0.001125$, $n=441$
Graphical Representation of the Results

Conclusions and Recommendations

TIM-WITNESS: WRR factor = 0.997303, \(\sigma = 0.001417, n = 278 \)

TMI67502: WRR factor = 0.999294, \(\sigma = 0.001024, n = 454 \)

TMI67604: WRR factor = 0.998226, \(\sigma = 0.001341, n = 440 \)
Conclusions and Recommendations

Graphical Representation of the Results

TMI68016: WRR factor = 0.999858, σ = 0.000758, n = 462

TMI68018: WRR factor = 0.996804, σ = 0.000642, n = 415

TMI68025: WRR factor = 0.998613, σ = 0.000920, n = 436
Graphical Representation of the Results

Conclusions and Recommendations

TMI68835: WRR factor=1.000980, σ=0.001050, n=436

TMI69137: WRR factor=1.001750, σ=0.000843, n=467
Chapter 4 Auxiliary Data

4.1 Direct and Diffuse Irradiance

Direct (WRR) and diffuse irradiance (shaded K&Z CM22 S/N 020059).
4.2 Meteorological Data

Meteorological parameters measured by the SwissMetNet Davos station of MeteoSwiss (adjacent to IPC-XI measuring field).
A four-channel Precision Filter Radiometer (PFR) was used to determine AOD.
4.4 Scattering parameters

Ångström exponents (α) from PFR AOD data. Scattering asymmetry, single scattering albedo (SSA), and water column (H_2O) based on data from the AERONET Davos station. Ozon (O_3) measured by the WRC Brewer #163.
4.5 Scattering phase functions

Scattering phase functions derived from AERONET inversions. These data were used to correct for the aureole effect in pyrheliometers with non-standard viewing geometries.
Chapter 5 Symposium

5.1 To Build and Share Knowledge

On cloudy, overcast, or rainy days when no measurements were possible the IPC-XI symposium and course on radiation measurement were held. Radiation experts from PMOD/WRC as well as may IPC-XI participants presented their work and/or national radiation infrastructure in order to share and build knowledge.

Over the three weeks, more than 30 talks and presentations were given, most of which are available for download on the IPC-XI ftp site ftp://ftp.pmodwrc.ch/stealth/ipc-xi.

5.2 Artistic Representation

During IPC-XI an art photographer was collecting photographic and video material for an art project in Bergen, Norway. Many of the photographs as well as a short movie are available on the IPC-XI ftp site ftp://ftp.pmodwrc.ch/stealth/ipc-xi/presentations/from ellen/.
Chapter 6 Supplementary Information

6.1 Addresses of Participants
Addresses of Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ihab Abboud</td>
<td>Environment Canada</td>
<td>Meteorological Service of Canada</td>
<td>001 306 546 6444</td>
<td>001 306 546 6400</td>
<td>Ihab.Abboud@ec.gc.ca</td>
</tr>
<tr>
<td>Akihito Akiyama</td>
<td>EKO Instruments Europe B.V.</td>
<td>Middelgracht 87H, 2312 TT Leiden, The Netherlands</td>
<td>0031 71 5141 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mohamed Badrane</td>
<td>Meteo Maroc</td>
<td>51 Residence Aouzal 3, Avenue Ain Tawajtate, Bourgone Casablanca</td>
<td>0021 266 362 94 98</td>
<td></td>
<td>mohamed.badrane@hotmail.com</td>
</tr>
<tr>
<td>Sami Bali</td>
<td>R.M.I.</td>
<td>Ringlaan 3 Avenue Circulaire, 1180 Uccle-Brussels, Belgium</td>
<td>0032 2 373 06 26</td>
<td>0032 2 374 67 88</td>
<td>Sami.Bali@oma.be</td>
</tr>
<tr>
<td>Klaus Behrens</td>
<td>Deutscher Wetterdienst</td>
<td>Am Observatory 12, 15848 Tauche-OT Lindenberg, Germany</td>
<td>0049 33 677 601 51</td>
<td>0049 33 677 602 80</td>
<td>klaus.behrens@dwd.de</td>
</tr>
<tr>
<td>Francesco J. Bernal Garcia</td>
<td>IDEAM</td>
<td>Carrera 10 20-30, Bogata D.C., Colombia</td>
<td>0057 3002 130286</td>
<td></td>
<td>trabernal@ideam.gov.co</td>
</tr>
<tr>
<td>Gerardo Carbajal Benitez</td>
<td>Servicio Meteorologico Naciona</td>
<td>25 de Mayo 658, 1427 Buenos Aires, Argentina</td>
<td>0054 115 1676767</td>
<td></td>
<td>gcarbajal@smn.gov.ar</td>
</tr>
<tr>
<td>Thomas Carlund</td>
<td>Swedish Meteorological and Hydrological Institut SMHI</td>
<td>Filkborgsvägen 1, 60176 Norrköping, Sweden</td>
<td>0048 11 495 8229</td>
<td></td>
<td>thomas.carlund@smhi.se</td>
</tr>
<tr>
<td>Miroslav Chmelik</td>
<td>Slovak Hydrometeorological Institute</td>
<td>Jeseniova 17, 833 15 Bratislava, Slovakia</td>
<td>00421 5 2773 1097</td>
<td></td>
<td>miroslav.chmelik@shm.gov.sk</td>
</tr>
<tr>
<td>Alessandra Colli</td>
<td>Institute for Renewable Energy</td>
<td>EURAC Research, Viale Druso 1, 39100 Bolzano, Italy</td>
<td>0039 0471 055 630</td>
<td></td>
<td>alessandra.colli@eurac.edu</td>
</tr>
<tr>
<td>Steven Dewitte</td>
<td>RMI</td>
<td>Department of Aerology, Ringlaan 3 Avenue Circulaire, 1180 Bruxelles, Belgium</td>
<td>0032 2 373 06 24</td>
<td>0032 2 3746788</td>
<td>Steven.Dewitte@oma.be</td>
</tr>
<tr>
<td>Vivien S. Esquivel</td>
<td>Philippine Atmospheric, Geophys. and Astron. Services</td>
<td>PAGASA, Quezon City, Philippines, phone: 0063 927 5509, fax: 0063 373 3420</td>
<td></td>
<td></td>
<td>vivien.esquivel@yahoo.com</td>
</tr>
<tr>
<td>Bruce Forgan</td>
<td>Bureau of Meteorology</td>
<td>Atmosphere Watch Section, OEB, 700 Collins St., Docklands 3008, Australia</td>
<td>0061 39669 4111</td>
<td>0061 39669 4736</td>
<td>b.forgan@bom.gov.au</td>
</tr>
<tr>
<td>Luis Gonzalez</td>
<td>R.M.I.</td>
<td>Ringlaan 3 Avenue Circulaire, 1180 Uccle-Brussels, Belgium</td>
<td>0048 11 495 8229</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne Andersson</td>
<td>SP Technical Research Institut</td>
<td>Box 857, 50115 Boras, Sweden</td>
<td>0046 33 165 403</td>
<td>0046 33 165 620</td>
<td>anne.andersson@sp.se</td>
</tr>
<tr>
<td>Akihito Akiyama</td>
<td>Israel Meteorological Service</td>
<td>P.O. Box 26, 50250 Bet-Dagan, Israel</td>
<td>00972 3 9682144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mohamed Badrane</td>
<td>Institute of Meteorology and Water Management</td>
<td>61, Podlesa Str., 448147 Warsaw, Poland</td>
<td>0048 22 373 06 78</td>
<td>0048 22 374 67 88</td>
<td>balex@ims.gov.il</td>
</tr>
<tr>
<td>Barbara Bogdanska</td>
<td>RMI</td>
<td>Department of Aerology, Ringlaan 3 Avenue Circulaire, 1180 Uccle-Brussels, Belgium</td>
<td>0032 2 373 0602</td>
<td>0032 2 374 67 88</td>
<td></td>
</tr>
<tr>
<td>André Chevalier</td>
<td>RMI</td>
<td>Department of Aerology, Ringlaan 3 Avenue Circulaire, 1180 Uccle-Brussels, Belgium</td>
<td>0032 2 373 0602</td>
<td>0032 2 374 67 88</td>
<td>a.chevalier@oma.be</td>
</tr>
<tr>
<td>Frederick Denn</td>
<td>NASA Langley</td>
<td>1 Enterprise Parkway, Hampton VA, 23693, USA</td>
<td>001 757 951 1636</td>
<td>001 757 951 1900</td>
<td>frederick.denn@nasa.gov</td>
</tr>
<tr>
<td>Patrick Fishwick</td>
<td>Met Office</td>
<td>Fitzroy Road, Exeter, EX1 3PB, United Kingdom</td>
<td>0044 139 288 6289</td>
<td>0044 13 9288 5681</td>
<td>patrick.fishwick@metoffice.gov.uk</td>
</tr>
<tr>
<td>Luke Green</td>
<td>Met Office</td>
<td>Fitzroy Road, Exeter, EX1 3PB, United Kingdom</td>
<td>0044 139 288 6283</td>
<td>0044 13 9288 5681</td>
<td>luke.green@metoffice.gov.uk</td>
</tr>
</tbody>
</table>
Supplementary Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Halliwell</td>
<td>BSRN Observatory Site Scientist, Environment Canada, 100 R-Y Trail,</td>
<td>david.halliwell@ec.gc.ca</td>
</tr>
<tr>
<td></td>
<td>RM of Bratt’s Lake, Wilcox, SK, S0G 5E0, Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 001 306 352 3818, fax: 001 306 546 6400</td>
<td></td>
</tr>
<tr>
<td>Karl Heuermann</td>
<td>LASP, 1234 Innovation Drive, Boulder, CO, 80303, USA</td>
<td>hoogendijk@eko-eu.com</td>
</tr>
<tr>
<td></td>
<td>2312 TT Leiden, The Netherlands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 0031 71 5141 300, e-mail: hoogendijk@eko-eu.com</td>
<td></td>
</tr>
<tr>
<td>Gary Hodges</td>
<td>University of Colorado, 325 Broadway Street, 80501 Boulder, United</td>
<td>gary.hodges@noaa.gov</td>
</tr>
<tr>
<td></td>
<td>States</td>
<td></td>
</tr>
<tr>
<td>Somchit Janjai</td>
<td>Solar Energy Research Lab., Silpakorn University, Muang - Nakhon Pathom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73000 Thailand</td>
<td></td>
</tr>
<tr>
<td>Wouter Knap</td>
<td>KNMI, P.O. Box 201, 3730 AE De Bilt, The Netherlands</td>
<td>knap@knmi.nl</td>
</tr>
<tr>
<td></td>
<td>phone: 0031 30 221 04 07, e-mail: knap@knmi.nl</td>
<td></td>
</tr>
<tr>
<td>Thomas Kirk</td>
<td>The Eppley Laboratory Inc., P.O. Box 419, 02840-0419 Newport, Rhode</td>
<td>info@eppleylab.com</td>
</tr>
<tr>
<td></td>
<td>Island, United States</td>
<td></td>
</tr>
<tr>
<td>Stefan Källberg</td>
<td>SP Technical Research Institute of Sweden, Box 857, 50115 Borås,</td>
<td>stefan.kalberg@sp.se</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Chang Lou</td>
<td>China Meteorological Administration, National Center for Meteo. Met.,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.46, Zhongguancun Nandajie, 100081 Beijing, China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 0086 0571 86783487, fax: 0086 0571 86783487</td>
<td></td>
</tr>
<tr>
<td>Meena Lysko</td>
<td>CSIR, PO Box 396, Pretoria 1, Gauteng South Africa</td>
<td>mlysko@csir.co.za</td>
</tr>
<tr>
<td></td>
<td>e-mail: mlysko@csir.co.za</td>
<td></td>
</tr>
<tr>
<td>Pierre Malcorps</td>
<td>IRMB, 3 Avenue Circulaire, 1180 Brussels, Belgium</td>
<td></td>
</tr>
<tr>
<td>Artur Maria Mandilate</td>
<td>National Inst. of Meteo Mozambique, Rua Mukumbura 164, Maputo,</td>
<td>artur_m@dinam.gov.mz</td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 00258 824 277493, fax: 00258 214 91150</td>
<td></td>
</tr>
<tr>
<td>Stefan Källberg</td>
<td>SP Technical Research Institute of Sweden, Box 857, 50115 Borås,</td>
<td>stefan.kalberg@sp.se</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Meena Lysko</td>
<td>CSIR, PO Box 396, Pretoria 1, Gauteng South Africa</td>
<td>mlysko@csir.co.za</td>
</tr>
<tr>
<td></td>
<td>e-mail: mlysko@csir.co.za</td>
<td></td>
</tr>
<tr>
<td>Pierre Malcorps</td>
<td>IRMB, 3 Avenue Circulaire, 1180 Brussels, Belgium</td>
<td></td>
</tr>
<tr>
<td>Artur Maria Mandilate</td>
<td>National Inst. of Meteo Mozambique, Rua Mukumbura 164, Maputo,</td>
<td>artur_m@dinam.gov.mz</td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 00258 824 277493, fax: 00258 214 91150</td>
<td></td>
</tr>
<tr>
<td>John R. Hickey</td>
<td>The Eppley Laboratory Inc., P.O. Box 419, 02840-0419 Newport, Rhode</td>
<td>johnh@eppleylab.com</td>
</tr>
<tr>
<td></td>
<td>Island, United States</td>
<td></td>
</tr>
<tr>
<td>Osamu Ijima</td>
<td>Japan Meteorological Agency, Radiation Section, 1-3-4 Otemachi, Chiyoda-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ku, Tokyo 100-8122, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 0081 3 3212 8341, fax: 0081 3 3211 4640</td>
<td></td>
</tr>
<tr>
<td>Jan-Erik Karlsson</td>
<td>Swedish Meteorological and Hydrological Institute, SMHI, Fikborgsvägen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 60176 Norrköping, Sweden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 0046 11 158 381, e-mail: 0046 11 151 707</td>
<td></td>
</tr>
<tr>
<td>Jorgen Konings</td>
<td>Hukseflux Thermal Sensors, Electronikaweg 25, 2628 KG Delft, The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Martin Mair</td>
<td>ZAMG, Hohe Warte 38, 1190 Wien, Österreich</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 0043 1360 262 706, fax: 0043 3602 627 20</td>
<td></td>
</tr>
<tr>
<td>Itsara Masiri</td>
<td>Solar Energy Research Lab., Silpakorn University, Muang - Nakhon Pathom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73000 Thailand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone: 0066 848 841 765, fax: 0066 34 271189</td>
<td></td>
</tr>
</tbody>
</table>

Addresses of Participants
<table>
<thead>
<tr>
<th>Addresses of Participants</th>
<th>Supplementary Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joop Mes</td>
<td>Darius Mikalajunas</td>
</tr>
<tr>
<td>Kipp & Zonen</td>
<td>Lithuanian Hydromet. Service</td>
</tr>
<tr>
<td>Delftechpark 36</td>
<td>Rudnios Str. 6</td>
</tr>
<tr>
<td>2628 XH Delf</td>
<td>2600 Vilnius</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Lithuania</td>
</tr>
<tr>
<td>phone: 0031 15 2755 210</td>
<td>phone: 00370 6 030 9478</td>
</tr>
<tr>
<td>fax: 0031 15 2620 351</td>
<td>fax: 00370 5 272 8874</td>
</tr>
<tr>
<td>e-mail: joop.mes@kippzonen.com</td>
<td>e-mail: d.mikalajunas@meteo.lt</td>
</tr>
</tbody>
</table>

Joseph Michalsky	Svetlana Morozova
NOAA/OAR	FGUP VNIIOFI
325 Broadway R/GMD	Ozernaya Str., 46
Boulder, CO 80305-3337	119361 Moscow
USA	Russia
phone: 001 303 497 6360	phone: 007 095 437 3700
fax: 001 303 497 6546	fax: 007 095 437 3700
e-mail: joseph.michalsky@noaa.gov	e-mail: morozova-m4@vniiofi.ru

Michael Milner	Kolawole Salimon Muyiolu
Bureau Of Meteorology	Nigerian Meteorological Agency
700 Collins Street	33 Pope John Paul Street
Docklands 3008	Maitama District
Australia	PMB 0615 Abuja
phone: 0061 39669 4122	Nigeria
fax: 0061 39669 4122	phone: 00234 805 3059787
e-mail: m.milner@bom.gov.au	fax: 00234 941 30710
	e-mail: muyiolu_kolawole@yahoo.com

Jean-Philippe Morel	Sophie Mulaudzi
Méteo-France	CSIR
Chef du Centre Radiométrique	P.O. Box 395
785 Chemin de l’Hermitage	Pretoria 1, Gauteng
84200 Carpentras - Serres	South Africa
France	e-mail: Sophie.Mulaudzi@univen.ac.za
phone: 0033 490 636 967	
fax: 0033 490 636 959	
e-mail: jean-philippe.morel@meteo.fr	

Pedro Mostraj	Erik Naranen
Dirección Meteorológica de Chile	Atlas Weathering/DSET Labs
Av. Diego Portales 3450	45601 North 47th Ave.
Estacion Central	85087 Phoenix, Arizona
Santiago	USA
Chile	phone: 001 623 201 1032
phone: 0056 2 4364549	fax: 001 623 465 9409
fax: 0056 2 4364549	e-mail: enaranen@atlas-mts.com
e-mail: pmostraj@meteochile.cl	

Zoltán Nagy	Ifeanyi Daniel Nnodu
Hungarian Meteorological Service	Nigerian Meteorological Agency
Measurement Techniques and	33 Pope John Paul Street
Methodology Division	Maitama District
1181 Budapest	PMB 0615 Abuja
Hungary	Nigeria
phone: 0036 1 3464 855	phone: 00234 803 339282
fax: 0036 1 3464 849	fax: 00234 941 30710
e-mail: nagy.z@met.hu	e-mail: idnnodu@yahoo.com

Ormanda Niebergall	Cristian Oprea
Environment Canada	National Institute of Meteorology and Hydrology
P.O Box 160	Sos, Bucuresti-Ploiești 97
S02 SE Wilcox, Saskatchewan	13886 Bucharest
Canada	Romania
phone: 001 306 352 3818	phone: 0040 21 316 31 16
fax: 001 306 546 6400	fax: 0040 21 316 88 62
e-mail: Ormanda.Niebergall@ec.gc.ca	e-mail: relati@meteo.imnh.ro

Jan Alse Olseth	Alexander Pavlov
University of Bergen	Voeikov MGO
Geophysical Institute	7, Karbyshov st.
5007 Bergen	194021 St. Petersburg
Norway	Russia
phone: 0047 55 582 892	phone: 007 812 297 4390
fax: 0047 97 577 829	fax: 007 812 247 8661
e-mail: jan.OLVEseth@ghi.uib.no	e-mail: etalon@main.mgo.rssi.ru

Maria Pavlovich	Bouziane Ouchene
VNIIOFI	Météorologie Algérie
46, Ozernaya Str.	Boite postale 31
Moscow 119361	11000 EI hoira, Tamanrasset
Russia	Algeria
phone: 007 495 437 2992	phone: 00213 2934 4673
fax: 007 495 437 3700	fax: 00213 2934 4226
e-mail: pavlovitch-m4@vniiofi.ru	e-mail: b_ouchene@yahoo.fr

<p>| Vladimir Pavlovich | Supplementary Information |
| VNIIOFI | |
| 46, Ozernaya Str. | |
| Moscow 119361 | |
| Russia | |
| phone: 007 495 437 2992 | |
| fax: 007 495 437 2992 | |
| e-mail: VLP.47@mail.ru | |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Wendell</td>
<td>NOAA/ESRL/GMD 325 Broadway Boulder, CO 80305 USA</td>
<td>phone: 001 303 497 6994 e-mail: jim.wendell@noaa.gov</td>
</tr>
<tr>
<td>Ed Worrell</td>
<td>EKO Instruments Europe B.V. Middelstegacht 87H 2312 TT Leiden The Netherlands</td>
<td>phone: 0031 71 5141 300 fax: 0031 71 5126 222 e-mail: ed.worrell@eko-eu.com</td>
</tr>
<tr>
<td>Yun Yang</td>
<td>China Meteorological Administration National Center for Meteo. Met. No.46, Zhongguancun Nandajie 100081 Beijing China</td>
<td>phone: 0086 1068 406936 fax: 0086 1068 400936 e-mail: yyaoc@cma.gov.cn</td>
</tr>
<tr>
<td>Dong Jun Yang</td>
<td>CIOMP Dong Nanhu Road 3888 No.46, Zhongguancun Nandajie 130033 Changchun, Jilin China</td>
<td>phone: 0086 0431 86708089 fax: 086-0431-86176883 e-mail: djyang0827@163.com</td>
</tr>
<tr>
<td>Xin Ye</td>
<td>CIOMP Dong Nanhu Road 3888 No.46, Zhongguancun Nandajie 130033 Changchun, Jilin China</td>
<td>phone: 0086 0431 86708089 fax: 0086 0431 86176883 e-mail: newsyears@ustc.edu</td>
</tr>
<tr>
<td>Willem J. Zaaiman</td>
<td>European Commission-DG JRC Via Fermi, 2749 21020 Ispra Varese Italy</td>
<td>phone: 0039 0332 785 750 fax: 0039 0332 789 268 e-mail: willem.zaaiman@jrc.ec.europa.eu</td>
</tr>
</tbody>
</table>